normal_crit {ICSClust} | R Documentation |
Selection of Non-normal Invariant Components Using Marginal Normality Tests
Description
Identifies invariant coordinates that are non normal using univariate
normality tests as in the comp.norm.test
function from the
ICSOutlier
package, with the difference that both the
first and last few components are investigated.
Usage
normal_crit(object, ...)
## S3 method for class 'ICS'
normal_crit(
object,
level = 0.05,
test = c("agostino.test", "jarque.test", "anscombe.test", "bonett.test",
"shapiro.test"),
max_select = NULL,
select_only = FALSE,
...
)
## Default S3 method:
normal_crit(
object,
level = 0.05,
test = c("agostino.test", "jarque.test", "anscombe.test", "bonett.test",
"shapiro.test"),
max_select = NULL,
select_only = FALSE,
gen_kurtosis = NULL,
...
)
Arguments
object |
object of class |
... |
additional arguments are currently ignored. |
level |
the initial level used to make a decision based on the test p-values. See details. Default is 0.05. |
test |
name of the normality test to be used. Possibilities are
|
max_select |
the maximal number of components to select. |
select_only |
boolean. If |
gen_kurtosis |
vector of generalized kurtosis values. |
Details
The procedure sequentially tests the first and the last components until
finding no additional components as non-normal. The quantile levels are
adjusted for multiple testing by taking the level as level
/j for the
jth component.
Value
If select_only
is TRUE
a vector of the names of the invariant
components or variables to select. If FALSE
an object of class "ICS_crit"
is returned with the following objects:
-
crit
: the name of the criterion "normal". -
level
: the level of the test. -
max_select
: the maximal number of components to select. -
test
: name of the normality test to be used. -
pvalues
: the p-values of the tests. -
adjusted_levels
: the adjusted levels. -
select
: the names of the invariant components or variables to select. -
gen_kurtosis
: the vector of generalized kurtosis values in case ofICS
object.
Author(s)
Andreas Alfons, Aurore Archimbaud, Klaus Nordhausen and Anne Ruiz-Gazen
References
Alfons, A., Archimbaud, A., Nordhausen, K., & Ruiz-Gazen, A. (2022). Tandem clustering with invariant coordinate selection. arXiv preprint arXiv:2212.06108..
Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2018). ICSOutlier: Unsupervised Outlier Detection for Low-Dimensional Contamination Structure, The RJournal, Vol. 10(1):234–250. doi:10.32614/RJ-2018-034
Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2016). ICSOutlier: Outlier Detection Using Invariant Coordinate Selection. R package version 0.3-0
See Also
med_crit()
, var_crit()
, discriminatory_crit()
,
jarque.test()
, anscombe.test()
,
bonett.test()
, agostino.test()
, stats::shapiro.test()
.
Examples
X <- iris[,-5]
out <- ICS(X)
normal_crit(out, level = 0.1, select_only = FALSE)