plot.minimax {ICAOD} | R Documentation |
Plotting minimax
Objects
Description
This function plots the evolution of the ICA algorithm (iteration vs the best (minimum) criterion value at each iteration) and also verifies the optimality of the last obtained design
using the general equivalence theorem. It plots the sensitivity function and calculates the ELB for the best design generated at iteration number iter
.
Usage
## S3 method for class 'minimax'
plot(
x,
iter = NULL,
sensitivity = TRUE,
calculate_criterion = FALSE,
sens.minimax.control = list(),
crt.minimax.control = list(),
sens.bayes.control = list(),
crt.bayes.control = list(),
sens.control = list(),
silent = TRUE,
plot_3d = c("lattice", "rgl"),
evolution = FALSE,
...
)
Arguments
x |
An object of class |
iter |
Iteration number. if |
sensitivity |
Logical. If |
calculate_criterion |
Logical. Re-calculate the criterion value (maybe with a set of new tuning parameters to be sure of the globality of the maximum over the parameter space given the design)? It only assumes a continuous parameter space for the minimax and standardized maximin designs. Defaults to |
sens.minimax.control |
Control parameters to verify general equivalence theorem. For details, see |
crt.minimax.control |
Control parameters to optimize the minimax or standardized maximin criterion at a given design over a continuous parameter space.
For details, see |
sens.bayes.control |
Control parameters to verify general equivalence theorem for the Bayesian optimal designs. For details, see |
crt.bayes.control |
Control parameters to optimize the integration in the Bayesian criterion at a given design over a continuous parameter space. For details, see |
sens.control |
Control Parameters for Calculating the ELB. For details, see the function |
silent |
Do not print anything? Defaults to |
plot_3d |
Which package should be used to plot the sensitivity function for two-dimensional design space. Defaults to |
evolution |
Plot Evolution? Defaults to |
... |
Argument with no further use. |
Details
In addition to verifying the general equivalence theorem,
this function makes it possible to re-calculated the criterion value
for the output designs using a new set of tuning parameters, especially,
a large value for maxeval
in the function crt.minimax.control
.
This is useful for minimax and standardized maximin optimal designs to assess
the robustness of the
criterion value with respect to different values of maxeval
.
To put it simple, for these designs, the user can re-calculate the
criterion value (finds the global maximum over the parameter space given an output design in a minimax problem)
with larger values for maxeval
in crt.minimax.control
to be sure that the function nloptr
finds global optima of the inner
optimization problem over the parameter space using the default value
(or the user-given value) of maxeval
.
If increasing the value of maxeval
returns different criterion values,
then the results can not be trusted and the algorithm should be repeated with a higher value for maxeval
.