Optimal Designs for Nonlinear Statistical Models by Imperialist Competitive Algorithm (ICA)


[Up] [Top]

Documentation for package ‘ICAOD’ version 1.0.1

Help Pages

bayes Bayesian D-Optimal Designs
bayes.update Updating an Object of Class 'minimax'
bayescomp Bayesian Compound DP-Optimal Designs
beff Calculates Relative Efficiency for Bayesian Optimal Designs
crt.bayes.control Returns Control Parameters for Approximating Bayesian Criteria
crt.minimax.control Returns Control Parameters for Optimizing Minimax Criteria Over The Parameter Space
FIM_2par_exp_censor1 Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards Model for Type One Censored Data
FIM_2par_exp_censor2 Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards Model for Random Censored Data
FIM_3par_exp_censor1 Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards Model for Type One Censored Data
FIM_3par_exp_censor2 Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards Model for Random Censored Data
FIM_exp_2par Fisher Information Matrix for the 2-Parameter Exponential Model
FIM_kinetics_alcohol Fisher Information Matrix for the Alcohol-Kinetics Model
FIM_logistic Fisher Information Matrix for the 2-Parameter Logistic (2PL) Model
FIM_logistic_2pred Fisher Information Matrix for the Logistic Model with Two Predictors
FIM_logistic_4par Fisher Information Matrix for the 4-Parameter Logistic Model
FIM_loglin Fisher Information Matrix for the Mixed Inhibition Model
FIM_mixed_inhibition Fisher Information Matrix for the Mixed Inhibition Model.
FIM_power_logistic Fisher Information Matrix for the Power Logistic Model
FIM_sig_emax Fisher Information Matrix for the Sigmoid Emax Model
ICA.control Returns ICA Control Optimization Parameters
ICAOD ICAOD: Finding Optimal Designs for Nonlinear Models Using Imperialist Competitive Algorithm
leff Calculates Relative Efficiency for Locally Optimal Designs
locally Locally D-Optimal Designs
locallycomp Locally DP-Optimal Designs
meff Calculates Relative Efficiency for Minimax Optimal Designs
minimax Minimax and Standardized Maximin D-Optimal Designs
multiple Locally Multiple Objective Optimal Designs for the 4-Parameter Hill Model
normal Assumes A Multivariate Normal Prior Distribution for The Model Parameters
plot.minimax Plotting 'minimax' Objects
print.minimax Printing 'minimax' Objects
print.sensminimax Printing 'sensminimax' Objects
robust Robust D-Optimal Designs
sens.bayes.control Returns Control Parameters for Approximating The Integrals In The Bayesian Sensitivity Functions
sens.control Returns Control Parameters To Find Maximum of The Sensitivity (Derivative) Function Over The Design Space
sens.minimax.control Returns Control Parameters for Verifying General Equivalence Theorem For Minimax Optimal Designs
sensbayes Verifying Optimality of Bayesian D-optimal Designs
sensbayescomp Verifying Optimality of Bayesian Compound DP-optimal Designs
senslocally Verifying Optimality of The Locally D-optimal Designs
senslocallycomp Verifying Optimality of The Locally DP-optimal Designs
sensminimax Verifying Optimality of The Minimax and Standardized maximin D-optimal Designs
sensmultiple Verifying Optimality of The Multiple Objective Designs for The 4-Parameter Hill Model
sensrobust Verifying Optimality of The Robust Designs
skewnormal Assumes A Multivariate Skewed Normal Prior Distribution for The Model Parameters
student Multivariate Student's t Prior Distribution for Model Parameters
uniform Assume A Multivariate Uniform Prior Distribution for The Model Parameters
update.minimax Updating an Object of Class 'minimax'