bayes |
Bayesian D-Optimal Designs |
bayes.update |
Updating an Object of Class 'minimax' |
bayescomp |
Bayesian Compound DP-Optimal Designs |
beff |
Calculates Relative Efficiency for Bayesian Optimal Designs |
crt.bayes.control |
Returns Control Parameters for Approximating Bayesian Criteria |
crt.minimax.control |
Returns Control Parameters for Optimizing Minimax Criteria Over The Parameter Space |
FIM_2par_exp_censor1 |
Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards Model for Type One Censored Data |
FIM_2par_exp_censor2 |
Fisher Information Matrix for a 2-Parameter Cox Proportional-Hazards Model for Random Censored Data |
FIM_3par_exp_censor1 |
Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards Model for Type One Censored Data |
FIM_3par_exp_censor2 |
Fisher Information Matrix for a 3-Parameter Cox Proportional-Hazards Model for Random Censored Data |
FIM_exp_2par |
Fisher Information Matrix for the 2-Parameter Exponential Model |
FIM_kinetics_alcohol |
Fisher Information Matrix for the Alcohol-Kinetics Model |
FIM_logistic |
Fisher Information Matrix for the 2-Parameter Logistic (2PL) Model |
FIM_logistic_2pred |
Fisher Information Matrix for the Logistic Model with Two Predictors |
FIM_logistic_4par |
Fisher Information Matrix for the 4-Parameter Logistic Model |
FIM_loglin |
Fisher Information Matrix for the Mixed Inhibition Model |
FIM_mixed_inhibition |
Fisher Information Matrix for the Mixed Inhibition Model. |
FIM_power_logistic |
Fisher Information Matrix for the Power Logistic Model |
FIM_sig_emax |
Fisher Information Matrix for the Sigmoid Emax Model |
ICA.control |
Returns ICA Control Optimization Parameters |
ICAOD |
ICAOD: Finding Optimal Designs for Nonlinear Models Using Imperialist Competitive Algorithm |
leff |
Calculates Relative Efficiency for Locally Optimal Designs |
locally |
Locally D-Optimal Designs |
locallycomp |
Locally DP-Optimal Designs |
meff |
Calculates Relative Efficiency for Minimax Optimal Designs |
minimax |
Minimax and Standardized Maximin D-Optimal Designs |
multiple |
Locally Multiple Objective Optimal Designs for the 4-Parameter Hill Model |
normal |
Assumes A Multivariate Normal Prior Distribution for The Model Parameters |
plot.minimax |
Plotting 'minimax' Objects |
print.minimax |
Printing 'minimax' Objects |
print.sensminimax |
Printing 'sensminimax' Objects |
robust |
Robust D-Optimal Designs |
sens.bayes.control |
Returns Control Parameters for Approximating The Integrals In The Bayesian Sensitivity Functions |
sens.control |
Returns Control Parameters To Find Maximum of The Sensitivity (Derivative) Function Over The Design Space |
sens.minimax.control |
Returns Control Parameters for Verifying General Equivalence Theorem For Minimax Optimal Designs |
sensbayes |
Verifying Optimality of Bayesian D-optimal Designs |
sensbayescomp |
Verifying Optimality of Bayesian Compound DP-optimal Designs |
senslocally |
Verifying Optimality of The Locally D-optimal Designs |
senslocallycomp |
Verifying Optimality of The Locally DP-optimal Designs |
sensminimax |
Verifying Optimality of The Minimax and Standardized maximin D-optimal Designs |
sensmultiple |
Verifying Optimality of The Multiple Objective Designs for The 4-Parameter Hill Model |
sensrobust |
Verifying Optimality of The Robust Designs |
skewnormal |
Assumes A Multivariate Skewed Normal Prior Distribution for The Model Parameters |
student |
Multivariate Student's t Prior Distribution for Model Parameters |
uniform |
Assume A Multivariate Uniform Prior Distribution for The Model Parameters |
update.minimax |
Updating an Object of Class 'minimax' |