computeVPC.CP {HeritSeq} | R Documentation |
Calculate the compound Poisson (CP) variance partition coefficient (VPC) for one or more features.
Description
Calculate the CP VPC for one or more features following the model fitting function fit.CP().
Usage
computeVPC.CP(para)
Arguments
para |
A |
Value
A G \times 1
matrix consisting of VPC for
G features based on compound Poisson mixed models. Column name is
"CP-fit"; row names are the feature names.
Examples
## Compute VPC for each feature under compound Poisson mixed models.
vpc.cp <- computeVPC.CP(para_cp)
## Visulize the distribution of the VPCs.
hist(vpc.cp, breaks = 50, col = "cyan")
## Plot sorted VPCs.
plot(sort(vpc.cp), ylab = "Heritability (h2)", ylim = c(0,1), main = "Sorted CP VPC scores")
abline(h = 0.9, lty = 2, col = "red")
text(50, 0.92, "h2 = 0.9", col = "red")
[Package HeritSeq version 1.0.2 Index]