dbeta_new {HelpersMG} | R Documentation |
Density for the Beta distributions.
Description
Density for the Beta distribution with parameters mu and v or shape1 and
shape2 (and optional non-centrality parameter ncp).
The returned object has three attributes:
shape1, shape2, and ncp
Note that if x has other attributes, they are preserved.
Usage
dbeta_new(
x,
mu = NULL,
v = NULL,
shape1,
shape2,
ncp = 0,
log = FALSE,
silent = FALSE
)
Arguments
x |
vector of quantiles. |
mu |
mean of the Beta distribution. |
v |
variance of the Beta distribution. |
shape1 |
non-negative parameters of the Beta distribution. |
shape2 |
non-negative parameters of the Beta distribution. |
ncp |
non-centrality parameter. |
log |
logical; if TRUE, probabilities p are given as log(p). |
silent |
If FALSE, show the shape1 and shape 2 values. |
Details
dbeta_new returns the density for the Beta distributions
The Beta distribution with parameters shape1 = a and shape2 = b has density
gamma(a+b)/(gamma(a)gamma(b))x^(a-1)(1-x)^(b-1)
for a > 0, b > 0 and 0 <= x <= 1 where the boundary values at x=0 or x=1 are defined as by
continuity (as limits).
The mean is a/(a+b) and the variance is ab/((a+b)^2 (a+b+1)). These moments and all
distributional properties can be defined as limits.
Value
dbeta_new gives the density for the Beta distributions
Author(s)
Marc Girondot marc.girondot@gmail.com
See Also
Other Distributions:
cutter()
,
dSnbinom()
,
dcutter()
,
dggamma()
,
logLik.cutter()
,
plot.cutter()
,
print.cutter()
,
r2norm()
,
rcutter()
,
rmnorm()
,
rnbinom_new()
Examples
pi <- rbeta(100, shape1=0.48, shape2=0.12)
hist(pi, freq=FALSE, breaks=seq(from=0, to=1, by=0.1), ylim=c(0, 8), las=1)
library("HelpersMG")
mx <- ScalePreviousPlot()$ylim["end"]/
max(dbeta_new(seq(from=0.01, to=0.99, by=0.01), mu = 0.8, v=0.1))
curve(dbeta_new(x, mu = 0.8, v=0.1)*mx, add=TRUE, col="red")
out <- dbeta_new(0.1, mu = 0.8, v=0.1)
out
attributes(out)$shape1; attributes(out)$shape2; attributes(out)$ncp
dbeta(0.1, shape1=attributes(out)$shape1, shape2=attributes(out)$shape2,
ncp=attributes(out)$ncp)
# It can be used to generate random numbers using mu and v
out <- dbeta_new(0.1, mu = 0.8, v=0.1, silent=TRUE)
pi <- rbeta(100, shape1=attributes(out)$shape1, shape2=attributes(out)$shape2,
ncp=attributes(out)$ncp)
hist(pi, freq=FALSE, breaks=seq(from=0, to=1, by=0.1), ylim=c(0, 8), las=1)