LD50 {HelpersMG} | R Documentation |
Estimate the parameters that best describe LD50
Description
Estimate the parameters that best describe LD50
Logistic and logit models are the same but with different parametrization:
logistic = 1/(1+exp((1/S)(P-d)))
logit = 1/(1+exp(P+dS))
See these publications for the description of equations:
Girondot, M. 1999. Statistical description of temperature-dependent sex determination using maximum likelihood. Evolutionary Ecology Research, 1, 479-486.
Godfrey, M.H., Delmas, V., Girondot, M., 2003. Assessment of patterns of temperature-dependent sex determination using maximum likelihood model selection. Ecoscience 10, 265-272.
Hulin, V., Delmas, V., Girondot, M., Godfrey, M.H., Guillon, J.-M., 2009. Temperature-dependent sex determination and global change: are some species at greater risk? Oecologia 160, 493-506.
The flexit equation is not still published :
if dose < P then (1 + (2^K1 - 1) * exp(4 * S1 * (P - x)))^(-1/K1)
if dose > P then 1-((1 + (2^K2 - 1) * exp(4 * S2 * (x - P)))^(-1/K2)
with:
S1 = S/((4/K1)*(2^(-K1))^(1/K1+1)*(2^K1-1))
S2 = S/((4/K2)*(2^(-K2))^(1/K2+1)*(2^K2-1))
Usage
LD50(
df = NULL,
alive = NULL,
dead = NULL,
N = NULL,
doses = NULL,
l = 0.05,
parameters.initial = NULL,
fixed.parameters = NULL,
SE = NULL,
equation = "logistic",
replicates = 1000,
range.CI = 0.95,
limit.low.TRD.minimum = 5,
limit.high.TRD.maximum = 1000,
print = TRUE,
doses.plot = seq(from = 0, to = 1000, by = 0.1)
)
Arguments
df |
A dataframe with at least two columns named alive, dead or N and doses columns |
alive |
A vector with alive individuals at the end of experiment |
dead |
A vector with dead individuals at the end of experiment |
N |
A vector with total numbers of tested individuals |
doses |
The doses |
l |
The limit to define TRD (see Girondot, 1999) |
parameters.initial |
Initial values for P, S or K search as a vector, ex. c(P=29, S=-0.3) |
fixed.parameters |
Parameters that will not be changed during fit |
SE |
Standard errors for parameters |
equation |
Could be "logistic", "logit", "probit", Hill", "Richards", "Hulin", "flexit" or "Double-Richards" |
replicates |
Number of replicates to estimate confidence intervals |
range.CI |
The range of confidence interval for estimation, default=0.95 |
limit.low.TRD.minimum |
Minimum lower limit for TRD |
limit.high.TRD.maximum |
Maximum higher limit for TRD |
print |
Do the results must be printed at screen? TRUE (default) or FALSE |
doses.plot |
Sequences of doses that will be used for plotting. If NULL, does not estimate them |
Details
LD50 estimates the parameters that best describe LD50
Value
A list with the LD50, Transitional Range of Doses and their SE
Author(s)
Marc Girondot marc.girondot@gmail.com
See Also
Other LD50 functions:
LD50_MHmcmc()
,
LD50_MHmcmc_p()
,
logLik.LD50()
,
plot.LD50()
,
predict.LD50()
Examples
## Not run:
library("HelpersMG")
data <- data.frame(Doses=c(80, 120, 150, 150, 180, 200),
Alive=c(10, 12, 8, 6, 2, 1),
Dead=c(0, 1, 5, 6, 9, 15))
LD50_logistic <- LD50(data, equation="logistic")
predict(LD50_logistic, doses=c(140, 170))
plot(LD50_logistic, xlim=c(0, 300), at=seq(from=0, to=300, by=50))
LD50_probit <- LD50(data, equation="probit")
predict(LD50_probit, doses=c(140, 170))
plot(LD50_probit)
LD50_logit <- LD50(data, equation="logit")
predict(LD50_logit, doses=c(140, 170))
plot(LD50_logit)
LD50_hill <- LD50(data, equation="hill")
predict(LD50_hill, doses=c(140, 170))
plot(LD50_hill)
LD50_Richards <- LD50(data, equation="Richards")
predict(LD50_Richards, doses=c(140, 170))
plot(LD50_Richards)
LD50_Hulin <- LD50(data, equation="Hulin")
predict(LD50_Hulin, doses=c(140, 170))
plot(LD50_Hulin)
LD50_DoubleRichards <- LD50(data, equation="Double-Richards")
predict(LD50_DoubleRichards, doses=c(140, 170))
plot(LD50_DoubleRichards)
LD50_flexit <- LD50(data, equation="flexit")
predict(LD50_flexit, doses=c(140, 170))
plot(LD50_flexit)
## End(Not run)