h_xt_vec {HQM} | R Documentation |
Hqm estimator on the marker grid
Description
Computes the hqm estimator on the marker grid.
Usage
h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)
Arguments
br_X |
Marker value grid points that will be used in the evaluatiuon. |
br_s |
Time value grid points that will be used in the evaluatiuon. |
size_s_grid |
Size of the time grid. |
alpha |
Marker-hazard obtained from |
t |
Numeric value of the time the function should be evaluated. |
b |
Bandwidth. |
Yi |
A matrix made by |
int_X |
Position of the linear interpolated marker values on the marker grid. |
n |
Number of individuals. |
Details
The function implements the future conditional hazard estimator
\hat{h}_x(t) = \frac{\sum_{i=1}^n \int_0^T\hat{\alpha}_i(X_i(t+s))Z_i(t+s)Z_i(s)K_{b}(x-X_i(s))\mathrm {d}s}{\sum_{i=1}^n\int_0^TZ_i(t+s)Z_i(s)K_{b}(x-X_i(s))\mathrm {d}s},
for every x
on the marker grid where X
is the marker, Z
is the exposure and \alpha(z)
is the marker-only hazard, see get_alpha
for more details.
Value
A vector of \hat{h}_{x}(t)
for all values x
on the marker grid.
Examples
pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/( size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/( size_X_grid-1))
X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)
int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)
N <- make_N(pbc2, pbc2_id, br_X, br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s,
size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)
b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan )
Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s,
size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)
t = 2
h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)