g_xt {HQM} | R Documentation |
Computation of a key component for wild bootstrap
Description
Implements a key part for the wild bootstrap of the hqm estimator.
Usage
g_xt(br_X, br_s, size_s_grid, int_X, x, t, b, Yi, Y, n)
Arguments
br_X |
Marker value grid points that will be used in the evaluatiuon. |
br_s |
Time value grid points that will be used in the evaluatiuon. |
size_s_grid |
Size of the time grid. |
int_X |
Position of the linear interpolated marker values on the marker grid. |
x |
Numeric value of the last observed marker value. |
t |
Numeric value of the time the function should be evaluated. |
b |
Bandwidth. |
Yi |
A matrix made by |
Y |
A matrix made by |
n |
Number of individuals. |
Details
The function implements
\hat{g}_{t,x}(z) = \frac{1}{n} \sum_{ j = 1}^n \int^{T-t}_0 \hat{E}(X_j(t+s))^{-1} K_b(z,X_j(t+s)) Z_j(t+s)Z_j(s)K_b(x,X_j(s))ds,
for every value z
on the marker grid, where \hat{E}(x) = \frac{1}{n} \sum_{j=1}^n \int_0^T K_b(x,X_j(s))Z_j(s)ds
, Z
the exposure and X
the marker.
Value
A vector of \hat{g}_{t,x}(z)
for all values z
on the marker grid.
Examples
pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
X = pbc2$serBilir
s = pbc2$year
br_s = seq(0, max(s), max(s)/( size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/( size_X_grid-1))
X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)
int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)
Yi<-make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X, 'years', n)
Y<-make_Y(pbc2, pbc2_id, X_lin, br_X, br_s,size_s_grid,size_X_grid, int_s,int_X, 'years', n)
t = 2
x = 2
b = 10
g_xt(br_X, br_s, size_s_grid, int_X, x, t, b, Yi, Y, n)