ltzb {HKprocess} | R Documentation |
Value of quadratic forms for the inverse of a symmetric positive definite autocorrelation matrix.
Description
The function ltzb is used to calculate the value of quadratic forms for the inverse of a symmetric positive definite autocorrelation matrix, using the Levinson algorithm (Golub and Van Loan 1996, Algorithm 4.7.2).
Usage
ltzb(r, x)
Arguments
r |
autocorelation vector |
x |
time series data |
Value
Vector with values t(en) * solve(R) * x and t(en) * solve(R) * en. t(.) denotes the transpose of a vector, en = (1,1,...,1) and R is the autocorrelation matrix.
Author(s)
Hristos Tyralis
References
Golub GH, Van Loan CF (1996) Matrix Computations. Baltimore: John Hopkins University Press.
Examples
# Estimate the parameters for the Nile time series.
r <- acfHKp(H = 0.8,maxlag = length(Nile)-1)
examp <- ltzb(r,Nile)
# Comparison of the algorithm with typical approaches
examp[1] - as.numeric(t(rep(1, length(r))) %*% solve(toeplitz(r)) %*% Nile)
examp[2] - as.numeric(t(rep(1, length(r))) %*% solve(toeplitz(r)) %*%
rep(1,length(r)))
[Package HKprocess version 0.1-1 Index]