MannKendallLTP {HKprocess} | R Documentation |
Mann-Kendall trend test under the scaling hypothesis.
Description
The function MannKendallLTP applies the Mann-Kendall test under the scaling hypothesis for the data (Hamed 2008).
Usage
MannKendallLTP(data)
Arguments
data |
time series data |
Value
A list with three components.
Mann_Kendall |
Kendall's tau statistic, score, variance of score, Sen's slope, denominator D where tau=S/D and p-value for the Mann-Kendall test |
Significance_of_H |
H estimate (eq.21, Hamed 2008) of the modified variables and p-value |
Mann_Kendall_LTP |
Variance of score (p.356, Hamed 2008) and p-value for the Mann-Kendall test under the scaling hypothesis |
Note
The functions score.c, score0.c and VstarSfunction.c are called from the C library of the package. The estimator of H for the stochastic process in eq(18) (Hamed 2008) is the ML estimator in Tyralis and Koutsoyiannis (2011). The denominator for the Mann-Kendall test is calculated according to eq(23.3.4) in Hipel and McLeod (1994). The Mann-Kendall and modified Mann-Kendall test's hypotheses are Ho: no trend vs H1: trend is present. The H test's hypotheses are H0: H is not significant vs H1: H is significant.
Author(s)
Hristos Tyralis
References
Hamed KH (2008) Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349(3–4):350–363. doi:10.1016/j.jhydrol.2007.11.009.
Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems. Amsterdam: Elsevier.
Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process. Stochastic Environmental Research & Risk Assessment 25(1):21–33. doi:10.1007/s00477-010-0408-x.
Examples
# Modified Mann-Kendall test for the Nile time series.
MannKendallLTP(Nile)