| GeoVarestbootstrap {GeoModels} | R Documentation | 
Update a GeoFit object   using parametric bootstrap for std error estimation
Description
The procedure update a GeoFit object  computing stderr estimation, confidence intervals
and p-values  using parametric bootstrap.
Usage
GeoVarestbootstrap(fit,K=100,sparse=FALSE, GPU=NULL,local=c(1,1),
  optimizer=NULL, lower=NULL, upper=NULL, 
  method="cholesky",alpha=0.95, L=3000,parallel=FALSE,ncores=NULL)Arguments
| fit | A fitted object obtained from the
 | 
| K | The number of simulations in the parametric bootstrap. | 
| sparse | Logical; if  | 
| GPU | Numeric; if  | 
| local | Numeric; number of local work-items of the OpenCL setup | 
| optimizer | The type of optimization algorithm (see   | 
| lower | An optional named list giving the values  for the lower bound of the space parameter
when the optimizer is   | 
| upper | An optional named list giving the values  for the upper bound of the space parameter
when the optimizer is   | 
| method | String; The method of simulation. Default is  | 
| alpha | Numeric; The level of the confidence interval. | 
| L | Numeric; the number of lines in the turning band method. | 
| parallel | Logical; if  | 
| ncores | Numeric; number of cores involved in parallelization. | 
Details
 The function update a GeoFit object  estimating stderr estimation 
and confidence interval using parametric bootstrap.
Value
Returns an (updated) object of class GeoFit.
Author(s)
Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano
See Also
Examples
library(GeoModels)
################################################################
###
### Example 1. Test on the parameter
### of a regression model using conditional composite likelihood
###
###############################################################
set.seed(342)
model="Gaussian" 
# Define the spatial-coordinates of the points:
NN=3500
x = runif(NN, 0, 1)
y = runif(NN, 0, 1)
coords = cbind(x,y)
# Parameters
mean=1; mean1=-1.25;  # regression parameters
 sill=1 # variance
# matrix covariates
X=cbind(rep(1,nrow(coords)),runif(nrow(coords)))
# model correlation 
corrmodel="Matern"
smooth=0.5;scale=0.1; nugget=0;
# simulation
param=list(smooth=smooth,mean=mean,mean1=mean1,
              sill=sill,scale=scale,nugget=nugget)
data = GeoSim(coordx=coords, corrmodel=corrmodel,
                model=model, param=param,X=X)$data
I=Inf
fixed=list(nugget=nugget,smooth=smooth)
start=list(mean=mean,mean1=mean1,scale=scale,sill=sill)
lower=list(mean=-I,mean1=-I,scale=0,sill=0)
upper=list(mean=I,mean1=I,scale=I,sill=I)
# Maximum pairwise composite-likelihood fitting of the RF:
fit = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,
              likelihood="Conditional",type="Pairwise",sensitivity=TRUE,
                   lower=lower,upper=upper,neighb=3,
                   optimizer="nlminb",X=X,
                    start=start,fixed=fixed)
unlist(fit$param)
#fit_update=GeoVarestbootstrap(fit,K=100,parallel=TRUE)
#fit_update$stderr
#fit_update$conf.int
#fit_update$pvalues