GeoFit2 {GeoModels} | R Documentation |
Max-Likelihood-Based Fitting of Gaussian and non Gaussian RFs.
Description
Maximum weighted composite-likelihood fitting for Gaussian and some Non-Gaussian univariate spatial, spatio-temporal and bivariate spatial RFs. A first preliminary estimation is performed using independence composite-likelihood for the marginal parameters of the model. The estimates are then used as starting values in the second final estimation step. The function allows to fix any of the parameters and setting upper/lower bound in the optimization.
Usage
GeoFit2(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL,
copula=NULL,corrmodel,distance="Eucl",fixed=NULL,
anisopars=NULL,est.aniso=c(FALSE,FALSE),GPU=NULL,
grid=FALSE, likelihood='Marginal',
local=c(1,1), lower=NULL,maxdist=Inf,neighb=NULL,
maxtime=Inf, memdist=TRUE,method="cholesky",
model='Gaussian',n=1, onlyvar=FALSE ,
optimizer='Nelder-Mead', parallel=FALSE,
radius=6371, sensitivity=FALSE,sparse=FALSE,
start=NULL, taper=NULL, tapsep=NULL,
type='Pairwise', upper=NULL, varest=FALSE,
vartype='SubSamp', weighted=FALSE, winconst=NULL, winstp=NULL,
winconst_t=NULL, winstp_t=NULL,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL)
Arguments
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default is |
fixed |
An optional named list giving the values of the parameters that will be considered as known values. The listed parameters for a given correlation function will be not estimated. |
anisopars |
A list of two elements: "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
est.aniso |
A bivariate logical vector providing which anisotropic parameters must be estimated. |
GPU |
Numeric; if |
grid |
Logical; if |
likelihood |
String; the configuration of the composite
likelihood. |
local |
Numeric; number of local work-items of the OpenCL setup |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
maxdist |
Numeric; an optional positive value indicating the maximum spatial distance considered in the composite or tapered likelihood computation. See the Section Details for more information. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood in the composite likelihood computation. See the Section Details for more information. |
maxtime |
Numeric; an optional positive integer indicating the order of temporal neighborhood in the composite likelihood computation. |
memdist |
Logical; if |
method |
String; the type of matrix decomposition used in the simulation. Default is cholesky.
The other possible choices is |
model |
String; the type of RF and therefore the densities associated to the likelihood
objects. |
n |
Numeric; number of trials in a binomial RF; number of successes in a negative binomial RF |
onlyvar |
Logical; if |
optimizer |
String; the optimization algorithm
(see |
parallel |
Logical; if |
radius |
Numeric; the radius of the sphere in the case of lon-lat coordinates. The default is 6371, the radius of the earth. |
sensitivity |
Logical; if |
sparse |
Logical; if |
start |
An optional named list with the initial values of the
parameters that are used by the numerical routines in maximization
procedure. |
taper |
String; the name of the type of covariance matrix.
It can be |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space time adaptive taper (see Details). |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
varest |
Logical; if |
vartype |
String; ( |
weighted |
Logical; if |
winconst |
Numeric; a bivariate positive vector for computing the spatial sub-window in the sub-sampling procedure. See Details for more information. |
winstp |
Numeric; a value in |
winconst_t |
Numeric; a positive value for computing the temporal sub-window in the sub-sampling procedure. See Details for more information. |
winstp_t |
Numeric; a value in |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
nosym |
Logical; if TRUE simmetric weights are not considered. This allows a faster but less efficient CL estimation. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
Details
The function GeoFit2
is similar to the function GeoFit
.
However GeoFit2
performs a preliminary estimation using maximum indenpendence composite likelihood
of the marginal parameters of the model and then use the obtained estimates as starting value in the global
weighted composite likelihood estimation (that includes marginal and dependence parameters).
This allows to obtain "good" starting values in the optimization algorithm for the marginal parameters.
Value
Returns an object of class GeoFit
.
An object of class GeoFit
is a list containing
at most the following components:
bivariate |
Logical: |
clic |
The composite information criterion, if the full likelihood is considered then it coincides with the Akaike information criterion; |
coordx |
A |
coordy |
A |
coordt |
A |
coordx_dyn |
A list of dynamical (in time) spatial coordinates; |
conf.int |
Confidence intervals for standard maximum likelihood estimation; |
convergence |
A string that denotes if convergence is reached; |
copula |
The type of copula; |
corrmodel |
The correlation model; |
data |
The vector or matrix or array of data; |
distance |
The type of spatial distance; |
fixed |
A list of the fixed parameters; |
iterations |
The number of iteration used by the numerical routine; |
likelihood |
The configuration of the composite likelihood; |
logCompLik |
The value of the log composite-likelihood at the maximum; |
maxdist |
The maximum spatial distance used in the weigthed composite likelihood. If no spatial distance is specified then it is NULL; |
maxtime |
The maximum temporal distance used in the weigthed composite likelihood. If no spatial distance is specified then it is NULL; |
message |
Extra message passed from the numerical routines; |
model |
The density associated to the likelihood objects; |
missp |
True if a misspecified Gaussian model is ued in the composite likelihhod; |
n |
The number of trials in a binominal RF;the number of successes in a negative Binomial RFs; |
neighb |
The order of spatial neighborhood in the composite likelihood computation. |
ns |
The number of (different) location sites in the bivariate case; |
nozero |
In the case of tapered likelihood the percentage of non zero values in the covariance matrix. Otherwise is NULL. |
numcoord |
The number of spatial coordinates; |
numtime |
The number of the temporal realisations of the RF; |
param |
A list of the parameters' estimates; |
radius |
The radius of the sphere in the case of great circle distance; |
stderr |
The vector of standard errors for standard maximum likelihood estimation; |
sensmat |
The sensitivity matrix; |
varcov |
The matrix of the variance-covariance of the estimates; |
varimat |
The variability matrix; |
vartype |
The method used to compute the variance of the estimates; |
type |
The type of the likelihood objects. |
winconst |
The constant used to compute the window size in the spatial sub-sampling; |
winstp |
The step used for moving the window in the spatial sub-sampling; |
winconst_t |
The constant used to compute the window size in the spatio-temporal sub-sampling; |
winstp_ |
The step used for moving the window in the spatio-temporal sub-sampling; |
X |
The matrix of covariates; |
Author(s)
Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano
Examples
library(GeoModels)
###############################################################
############ Examples of spatial Gaussian RFs ################
###############################################################
################################################################
###
### Example 1 : Maximum pairwise conditional likelihood fitting
### of a Gaussian RF with Matern correlation
###
###############################################################
model="Gaussian"
# Define the spatial-coordinates of the points:
set.seed(3)
N=400 # number of location sites
x <- runif(N, 0, 1)
set.seed(6)
y <- runif(N, 0, 1)
coords <- cbind(x,y)
# Define spatial matrix covariates
X=cbind(rep(1,N),runif(N))
# Set the covariance model's parameters:
corrmodel <- "Matern"
mean <- 0.2
mean1 <- -0.5
sill <- 1
nugget <- 0
scale <- 0.2/3
smooth=0.5
param<-list(mean=mean,mean1=mean1,sill=sill,nugget=nugget,scale=scale,smooth=smooth)
# Simulation of the spatial Gaussian RF:
data <- GeoSim(coordx=coords,model=model,corrmodel=corrmodel, param=param,X=X)$data
fixed<-list(nugget=nugget,smooth=smooth)
start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill)
################################################################
###
### Maximum pairwise likelihood fitting of
### Gaussian RFs with exponential correlation.
###
###############################################################
fit1 <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel,
optimizer="BFGS",neighb=3,likelihood="Conditional",
type="Pairwise", start=start,fixed=fixed,X=X)
print(fit1)
###############################################################
############ Examples of spatial non-Gaussian RFs #############
###############################################################
################################################################
###
### Example 2. Maximum pairwise likelihood fitting of
### a LogGaussian RF with Generalized Wendland correlation
###
###############################################################
set.seed(524)
# Define the spatial-coordinates of the points:
N=500
x <- runif(N, 0, 1)
y <- runif(N, 0, 1)
coords <- cbind(x,y)
X=cbind(rep(1,N),runif(N))
mean=1; mean1=2 # regression parameters
nugget=0
sill=0.5
scale=0.2
smooth=0
model="LogGaussian"
corrmodel="GenWend"
param=list(mean=mean,mean1=mean1,sill=sill,scale=scale,
nugget=nugget,power2=4,smooth=smooth)
# Simulation of a non stationary LogGaussian RF:
data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X,
param=param)$data
fixed<-list(nugget=nugget,power2=4,smooth=smooth)
start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill)
I=Inf
lower<-list(mean=-I,mean1=-I,scale=0,sill=0)
upper<-list(mean= I,mean1= I,scale=I,sill=I)
# Maximum pairwise composite-likelihood fitting of the RF:
fit <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model,
neighb=3,likelihood="Conditional",type="Pairwise",X=X,
optimizer="nlminb",lower=lower,upper=upper,
start=start,fixed=fixed)
print(unlist(fit$param))
################################################################
###
### Example 3. Maximum pairwise likelihood fitting of
### SinhAsinh RFs with Wendland0 correlation
###
###############################################################
set.seed(261)
model="SinhAsinh"
# Define the spatial-coordinates of the points:
x <- runif(500, 0, 1)
y <- runif(500, 0, 1)
coords <- cbind(x,y)
corrmodel="Wend0"
mean=0;nugget=0
sill=1
skew=-0.5
tail=1.5
power2=4
c_supp=0.2
# model parameters
param=list(power2=power2,skew=skew,tail=tail,
mean=mean,sill=sill,scale=c_supp,nugget=nugget)
data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data
plot(density(data))
fixed=list(power2=power2,nugget=nugget)
start=list(scale=c_supp,skew=skew,tail=tail,mean=mean,sill=sill)
# Maximum pairwise likelihood:
fit1 <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model,
neighb=3,likelihood="Marginal",type="Pairwise",
start=start,fixed=fixed)
print(unlist(fit1$param))