GeoDoScores {GeoModels} | R Documentation |
Computation of drop-one predictive scores
Description
The function computes RMSE, MAE, LSCORE, CRPS predictive scores based on drop-one prediction for a spatial, spatiotemporal and bivariate Gaussian RFs
Usage
GeoDoScores(data, method="cholesky", matrix)
Arguments
data |
A |
method |
String; the type of matrix decomposition used in the computation of the predictive scores. Default is |
matrix |
An object of class GeoCovmatrix. See the Section Details. |
Details
For a given covariance matrix object (GeoCovmatrix
)
and a given spatial, spatiotemporal or bivariare realization
from a Gaussian random field,
the function computes four predictive scores based on drop-one prediction.
Value
Returns a list containing the following informations:
RMSE |
Root-mean-square error predictive score |
MAE |
Mean absolute error predictive score |
LSCORE |
Logarithmic predictive score |
CRPS |
Continuous ranked probability predictive score |
Author(s)
Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano
References
Zhang H. and Wang Y. (2010). Kriging and cross-validation for massive spatial data. Environmetrics, 21, 290–304. Gneiting T. and Raftery A. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102
See Also
Examples
library(GeoModels)
################################################################
######### Examples of predictive score computation ############
################################################################
set.seed(8)
# Define the spatial-coordinates of the points:
x <- runif(500, 0, 2)
y <- runif(500, 0, 2)
coords=cbind(x,y)
matrix1 <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=list(smooth=0.5,
sill=1,scale=0.2,nugget=0))
data <- GeoSim(coordx=coords, corrmodel="Matern", param=list(mean=0,smooth=0.5,
sill=1,scale=0.2,nugget=0))$data
Pr_scores <- GeoDoScores(data,matrix=matrix1)
Pr_scores