GeoCovariogram {GeoModels} | R Documentation |
Computes the fitted variogram model.
Description
The procedure computes and plots estimated covariance or semivariogram models of a Gaussian or a non Gaussian spatial (temporal or bivariate spatial) random field. It allows to add the empirical estimates in order to compare them with the fitted model.
Usage
GeoCovariogram(fitted, distance="Eucl",answer.cov=FALSE,
answer.vario=FALSE, answer.range=FALSE, fix.lags=NULL,
fix.lagt=NULL, show.cov=FALSE, show.vario=FALSE,
show.range=FALSE, add.cov=FALSE, add.vario=FALSE,
pract.range=95, vario, ...)
Arguments
fitted |
A fitted object obtained from the
|
distance |
String; the name of the spatial distance. The default
is |
answer.cov |
Logical; if |
answer.vario |
Logical; if |
answer.range |
Logical; if |
fix.lags |
Integer; a positive value denoting the spatial lag to consider for the plot of the temporal profile. |
fix.lagt |
Integer; a positive value denoting the temporal lag to consider for the plot of the spatial profile. |
show.cov |
Logical; if |
show.vario |
Logical; if |
show.range |
Logical; if |
add.cov |
Logical; if |
add.vario |
Logical; if |
pract.range |
Numeric; the percent of the sill to be reached. |
vario |
A |
... |
other optional parameters which are passed to plot functions. |
Details
The function computes the fitted variogram model
Value
Produces a plot. No values are returned.
Author(s)
Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano
References
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
See Also
Examples
library(GeoModels)
library(scatterplot3d)
################################################################
###
### Example 1. Plot of fitted covariance and fitted
### and empirical semivariogram from a Gaussian RF
### with Matern correlation.
###
###############################################################
set.seed(21)
# Set the coordinates of the points:
x = runif(300, 0, 1)
y = runif(300, 0, 1)
coords=cbind(x,y)
# Set the model's parameters:
corrmodel = "Matern"
model = "Gaussian"
mean = 0
sill = 1
nugget = 0
scale = 0.2/3
smooth=0.5
param=list(mean=mean,sill=sill, nugget=nugget, scale=scale, smooth=smooth)
# Simulation of the Gaussian random field:
data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
I=Inf
start=list(mean=0,scale=scale,sill=sill)
lower=list(mean=-I,scale=0,sill=0)
upper=list(mean= I,scale=I,sill=I)
fixed=list(nugget=nugget,smooth=smooth)
# Maximum composite-likelihood fitting of the Gaussian random field:
fit = GeoFit(data=data,coordx=coords, corrmodel=corrmodel,model=model,
likelihood="Marginal",type='Pairwise',start=start,
lower=lower,upper=upper,
optimizer="nlminb", fixed=fixed,neighb=3)
# Empirical estimation of the variogram:
vario = GeoVariogram(data=data,coordx=coords,maxdist=0.5)
# Plot of covariance and variogram functions:
GeoCovariogram(fit,show.vario=TRUE, vario=vario,pch=20)
################################################################
###
### Example 2. Plot of fitted covariance and fitted
### and empirical semivariogram from a Bernoulli
### RF with Genwend correlation.
###
###############################################################
set.seed(2111)
model="Binomial";n=1
# Set the coordinates of the points:
x = runif(500, 0, 1)
y = runif(500, 0, 1)
coords=cbind(x,y)
# Set the model's parameters:
corrmodel = "GenWend"
mean = 0
nugget = 0
scale = 0.2
smooth=0
power=4
param=list(mean=mean, nugget=nugget, scale=scale,smooth=0,power2=4)
# Simulation of the Gaussian RF:
data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param,n=n)$data
start=list(mean=0,scale=scale)
fixed=list(nugget=nugget,power2=4,smooth=0)
# Maximum composite-likelihood fitting of the Binomial random field:
fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,
likelihood="Marginal",type='Pairwise',start=start,n=n,
optimizer="BFGS", fixed=fixed,neighb=4)
# Empirical estimation of the variogram:
vario = GeoVariogram(data,coordx=coords,maxdist=0.5)
# Plot of covariance and variogram functions:
GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20,ylim=c(0,0.3))
################################################################
###
### Example 3. Plot of fitted covariance and fitted
### and empirical semivariogram from a Weibull RF
### with Wend0 correlation.
###
###############################################################
set.seed(111)
model="Weibull";shape=4
# Set the coordinates of the points:
x = runif(700, 0, 1)
y = runif(700, 0, 1)
coords=cbind(x,y)
# Set the model's parameters:
corrmodel = "Wend0"
mean = 0
nugget = 0
scale = 0.4
power2=4
param=list(mean=mean, nugget=nugget, scale=scale,shape=shape,power2=power2)
# Simulation of the Gaussian RF:
data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
start=list(mean=0,scale=scale,shape=shape)
I=Inf
lower=list(mean=-I,scale=0,shape=0)
upper=list(mean= I,scale=I,shape=I)
fixed=list(nugget=nugget,power2=power2)
fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,
likelihood="Marginal",type='Pairwise',start=start,
lower=lower,upper=upper,
optimizer="nlminb", fixed=fixed,neighb=3)
# Empirical estimation of the variogram:
vario = GeoVariogram(data,coordx=coords,maxdist=0.5)
# Plot of covariance and variogram functions:
GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20)
################################################################
###
### Example 4. Plot of fitted and empirical semivariogram
### from a space time Gaussian random fields
### with double Matern correlation.
###
###############################################################
set.seed(92)
# Define the spatial-coordinates of the points:
x = runif(50, 0, 1)
y = runif(50, 0, 1)
coords=cbind(x,y)
# Define the temporal sequence:
time = seq(0, 10, 1)
param=list(mean=mean,nugget=nugget,
smooth_s=0.5,smooth_t=0.5,scale_s=0.5/3,scale_t=2/2,sill=sill)
# Simulation of the spatio-temporal Gaussian random field:
data = GeoSim(coordx=coords, coordt=time, corrmodel="Matern_Matern",param=param)$data
fixed=list(nugget=0, mean=0, smooth_s=0.5,smooth_t=0.5)
start=list(scale_s=0.2, scale_t=0.5, sill=1)
# Maximum composite-likelihood fitting of the space-time Gaussian random field:
fit = GeoFit(data, coordx=coords, coordt=time, corrmodel="Matern_Matern", maxtime=1,
neighb=3, likelihood="Marginal", type="Pairwise",fixed=fixed, start=start)
# Empirical estimation of spatio-temporal covariance:
vario = GeoVariogram(data,coordx=coords, coordt=time, maxtime=5,maxdist=0.5)
# Plot of the fitted space-time variogram
GeoCovariogram(fit,vario=vario,show.vario=TRUE)
# Plot of covariance, variogram and spatio and temporal profiles:
GeoCovariogram(fit,vario=vario,fix.lagt=1,fix.lags=1,show.vario=TRUE,pch=20)
################################################################
###
### Example 5. Plot of fitted and empirical semivariogram
### from a bivariate Gaussian random fields
### with Matern correlation.
###
###############################################################
set.seed(92)
# Define the spatial-coordinates of the points:
x <- runif(600, 0, 2)
y <- runif(600, 0, 2)
coords <- cbind(x,y)
# Simulation of a bivariate spatial Gaussian RF:
# with a Bivariate Matern
set.seed(12)
param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5,
scale_1=0.12,scale_2=0.1,scale_12=0.15,
sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=-0.5)
data <- GeoSim(coordx=coords,corrmodel="Bi_matern",
param=param)$data
# selecting fixed and estimated parameters
fixed=list(mean_1=4,mean_2=2,nugget_1=0,nugget_2=0,
smooth_1=0.5,smooth_2=0.5,smooth_12=0.5)
start=list(sill_1=var(data[1,]),sill_2=var(data[2,]),
scale_1=0.1,scale_2=0.1,scale_12=0.1,
pcol=cor(data[1,],data[2,]))
# Maximum marginal pairwise likelihood
fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern",
likelihood="Marginal",type="Pairwise",
optimizer="BFGS" , start=start,fixed=fixed,
neighb=4)
print(fitcl)
# Empirical estimation of spatio-temporal covariance:
vario = GeoVariogram(data,coordx=coords,maxdist=0.4,bivariate=TRUE)
GeoCovariogram(fitcl,vario=vario,show.vario=TRUE,pch=20)