GeoCovariogram {GeoModels}R Documentation

Computes the fitted variogram model.

Description

The procedure computes and plots estimated covariance or semivariogram models of a Gaussian or a non Gaussian spatial (temporal or bivariate spatial) random field. It allows to add the empirical estimates in order to compare them with the fitted model.

Usage

GeoCovariogram(fitted, distance="Eucl",answer.cov=FALSE,
            answer.vario=FALSE, answer.range=FALSE, fix.lags=NULL, 
             fix.lagt=NULL, show.cov=FALSE, show.vario=FALSE, 
            show.range=FALSE, add.cov=FALSE, add.vario=FALSE,
            pract.range=95, vario, ...)

Arguments

fitted

A fitted object obtained from the GeoFit or GeoWLS procedures.

distance

String; the name of the spatial distance. The default is Eucl, the euclidean distance. See GeoFit.

answer.cov

Logical; if TRUE a vector with the estimated covariance function is returned; if FALSE (the default) the covariance is not returned.

answer.vario

Logical; if TRUE a vector with the estimated variogram is returned; if FALSE (the default) the variogram is not returned.

answer.range

Logical; if TRUE the estimated pratical range is returned; if FALSE (the default) the pratical range is not returned.

fix.lags

Integer; a positive value denoting the spatial lag to consider for the plot of the temporal profile.

fix.lagt

Integer; a positive value denoting the temporal lag to consider for the plot of the spatial profile.

show.cov

Logical; if TRUE the estimated covariance function is plotted; if FALSE (the default) the covariance function is not plotted.

show.vario

Logical; if TRUE the estimated variogram is plotted; if FALSE (the default) the variogram is not plotted.

show.range

Logical; if TRUE the estimated pratical range is added on the plot; if FALSE (the default) the pratical range is not added.

add.cov

Logical; if TRUE the vector of the estimated covariance function is added on the current plot; if FALSE (the default) the covariance is not added.

add.vario

Logical; if TRUE the vector with the estimated variogram is added on the current plot; if FALSE (the default) the correlation is not added.

pract.range

Numeric; the percent of the sill to be reached.

vario

A Variogram object obtained from the GeoVariogram procedure.

...

other optional parameters which are passed to plot functions.

Details

The function computes the fitted variogram model

Value

Produces a plot. No values are returned.

Author(s)

Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano

References

Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.

Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.

See Also

GeoFit.

Examples

library(GeoModels)
library(scatterplot3d)

################################################################
###
### Example 1. Plot of fitted covariance and fitted 
### and empirical semivariogram from a  Gaussian RF 
### with Matern correlation. 
###
###############################################################
set.seed(21)
# Set the coordinates of the points:
x = runif(300, 0, 1)
y = runif(300, 0, 1)
coords=cbind(x,y)

# Set the model's parameters:
corrmodel = "Matern"
model = "Gaussian"
mean = 0
sill = 1
nugget = 0
scale = 0.2/3
smooth=0.5

param=list(mean=mean,sill=sill, nugget=nugget, scale=scale, smooth=smooth)
# Simulation of the Gaussian random field:
data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data
I=Inf
start=list(mean=0,scale=scale,sill=sill)
lower=list(mean=-I,scale=0,sill=0)
upper=list(mean= I,scale=I,sill=I)
fixed=list(nugget=nugget,smooth=smooth)
# Maximum composite-likelihood fitting of the Gaussian random field:
fit = GeoFit(data=data,coordx=coords, corrmodel=corrmodel,model=model,
            likelihood="Marginal",type='Pairwise',start=start,
            lower=lower,upper=upper,
            optimizer="nlminb", fixed=fixed,neighb=3)

# Empirical estimation of the variogram:
vario = GeoVariogram(data=data,coordx=coords,maxdist=0.5)

# Plot of covariance and variogram functions:
GeoCovariogram(fit,show.vario=TRUE, vario=vario,pch=20)

################################################################
###
### Example 2. Plot of fitted covariance and fitted 
### and empirical semivariogram from a  Bernoulli 
###  RF with Genwend  correlation. 
###
###############################################################
set.seed(2111)

model="Binomial";n=1
# Set the coordinates of the points:
x = runif(500, 0, 1)
y = runif(500, 0, 1)
coords=cbind(x,y)

# Set the model's parameters:
corrmodel = "GenWend"
mean = 0
nugget = 0
scale = 0.2
smooth=0
power=4
param=list(mean=mean, nugget=nugget, scale=scale,smooth=0,power2=4)
# Simulation of the Gaussian RF:
data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param,n=n)$data

start=list(mean=0,scale=scale)
fixed=list(nugget=nugget,power2=4,smooth=0)
# Maximum composite-likelihood fitting of the Binomial random field:
fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,
             likelihood="Marginal",type='Pairwise',start=start,n=n,
             optimizer="BFGS", fixed=fixed,neighb=4)

# Empirical estimation of the variogram:
vario = GeoVariogram(data,coordx=coords,maxdist=0.5)

# Plot of covariance and variogram functions:
GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20,ylim=c(0,0.3))


################################################################
###
### Example 3. Plot of fitted covariance and fitted 
### and empirical semivariogram from a  Weibull  RF
###   with Wend0 correlation. 
###
###############################################################
set.seed(111)

model="Weibull";shape=4
# Set the coordinates of the points:
x = runif(700, 0, 1)
y = runif(700, 0, 1)
coords=cbind(x,y)

# Set the model's parameters:
corrmodel = "Wend0"
mean = 0
nugget = 0
scale = 0.4
power2=4


param=list(mean=mean, nugget=nugget, scale=scale,shape=shape,power2=power2)
# Simulation of the Gaussian RF:
data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data

start=list(mean=0,scale=scale,shape=shape)
I=Inf
lower=list(mean=-I,scale=0,shape=0)
upper=list(mean= I,scale=I,shape=I)
fixed=list(nugget=nugget,power2=power2)

fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,
             likelihood="Marginal",type='Pairwise',start=start,
             lower=lower,upper=upper,
             optimizer="nlminb", fixed=fixed,neighb=3)

# Empirical estimation of the variogram:
vario = GeoVariogram(data,coordx=coords,maxdist=0.5)

# Plot of covariance and variogram functions:
GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20)

################################################################
###
### Example 4. Plot of  fitted  and empirical semivariogram
### from a space time Gaussian random fields  
### with double Matern correlation. 
###
###############################################################
set.seed(92)
# Define the spatial-coordinates of the points:
x = runif(50, 0, 1)
y = runif(50, 0, 1)
coords=cbind(x,y)
# Define the temporal sequence:
time = seq(0, 10, 1)


param=list(mean=mean,nugget=nugget,
  smooth_s=0.5,smooth_t=0.5,scale_s=0.5/3,scale_t=2/2,sill=sill)
# Simulation of the spatio-temporal Gaussian random field:
data = GeoSim(coordx=coords, coordt=time, corrmodel="Matern_Matern",param=param)$data

fixed=list(nugget=0, mean=0, smooth_s=0.5,smooth_t=0.5)
start=list(scale_s=0.2, scale_t=0.5, sill=1)
# Maximum composite-likelihood fitting of the space-time Gaussian random field:
fit = GeoFit(data, coordx=coords, coordt=time, corrmodel="Matern_Matern", maxtime=1,
             neighb=3, likelihood="Marginal", type="Pairwise",fixed=fixed, start=start)

# Empirical estimation of spatio-temporal covariance:
vario = GeoVariogram(data,coordx=coords, coordt=time, maxtime=5,maxdist=0.5)

# Plot of the fitted space-time variogram
GeoCovariogram(fit,vario=vario,show.vario=TRUE)

# Plot of covariance, variogram and spatio and temporal profiles:
GeoCovariogram(fit,vario=vario,fix.lagt=1,fix.lags=1,show.vario=TRUE,pch=20)


################################################################
###
### Example 5. Plot of  fitted  and empirical semivariogram
### from a bivariate Gaussian random fields  
### with  Matern correlation. 
###
###############################################################
set.seed(92)
# Define the spatial-coordinates of the points:
x <- runif(600, 0, 2)
y <- runif(600, 0, 2)
coords <- cbind(x,y)

# Simulation of a bivariate spatial Gaussian RF:
# with a  Bivariate Matern
set.seed(12)
param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5,
           scale_1=0.12,scale_2=0.1,scale_12=0.15,
           sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=-0.5)
data <- GeoSim(coordx=coords,corrmodel="Bi_matern",
              param=param)$data



# selecting fixed and estimated parameters
fixed=list(mean_1=4,mean_2=2,nugget_1=0,nugget_2=0,
      smooth_1=0.5,smooth_2=0.5,smooth_12=0.5)
start=list(sill_1=var(data[1,]),sill_2=var(data[2,]),
           scale_1=0.1,scale_2=0.1,scale_12=0.1,
           pcol=cor(data[1,],data[2,]))


# Maximum marginal pairwise likelihood
fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern",
                     likelihood="Marginal",type="Pairwise",
                     optimizer="BFGS" , start=start,fixed=fixed,
                     neighb=4)
print(fitcl)

# Empirical estimation of spatio-temporal covariance:
vario = GeoVariogram(data,coordx=coords,maxdist=0.4,bivariate=TRUE)
GeoCovariogram(fitcl,vario=vario,show.vario=TRUE,pch=20)

[Package GeoModels version 2.0.4 Index]