GeoCorrFct_Cop {GeoModels} | R Documentation |
Spatial and Spatio-temporal correlation or covariance of (non) Gaussian random fields (copula models)
Description
The function computes the correlations of a spatial or spatio-temporal or a bivariate spatial Gaussian or non Gaussian copula randomm field with a given covariance model and a set of spatial (temporal) distances.
Usage
GeoCorrFct_Cop(x,t=NULL,corrmodel,
model="Gaussian",copula="Gaussian",
distance="Eucl", param, radius=6371,
n=1,covariance=FALSE,variogram=FALSE)
Arguments
x |
A set of spatial distances. |
t |
A set of (optional) temporal distances. |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
model |
String; the type of RF. See |
copula |
String; the type of copula. The two options are Gaussian and Clayton. |
distance |
String; the name of the spatial distance. The default
is |
param |
A list of parameter values required for the covariance model. |
radius |
Numeric; a value indicating the radius of the sphere when using covariance models valid using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
n |
Numeric; the number of trials in a (negative) binomial random fields.
Default is |
covariance |
Logic; if TRUE then the covariance is returned. Default is FALSE |
variogram |
Logic; if FALSE then the covariance/coorelation is returned. Otherwise the associated semivariogram is returned |
Value
Returns a vector of correlations or covariances values associated to a given parametric spatial and temporal correlation models.
Author(s)
Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano
Examples
library(GeoModels)
################################################################
###
### Example 1. Correlation of a (mean reparametrized) beta random field with underlying
### Matern correlation model using Gaussian and Clayton copulas
###
###############################################################
# Define the spatial distances
x = seq(0,0.4,0.01)
# Correlation Parameters for Matern model
CorrParam("Matern")
NuisParam("Beta2")
# corr Gaussian copula
param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5)
corr1= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Gaussian",model="Beta2")
plot(corr1,ylab="corr",main="Gauss copula correlation",lwd=2)
# corr Clayton copula
param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5,nu=2)
corr2= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Clayton",model="Beta2")
lines(x,corr2$corr,ylim=c(0,1),lty=2)
plot(corr1,ylab="corr",main="Clayton copula correlation",lwd=2)