GeoCV {GeoModels} | R Documentation |
n-fold kriging Cross-validation
Description
The procedure use the GeoKrig
or GeoKrigloc
function to compute n-fold kriging cross-validation using informations from a GeoFit
object. The function returns some prediction scores.
Usage
GeoCV(fit, K=100, estimation=TRUE, optimizer=NULL,
lower=NULL, upper=NULL, n.fold=0.05,local=FALSE,
neighb=NULL, maxdist=NULL,maxtime=NULL,sparse=FALSE,
type_krig="Simple", which=1, parallel=FALSE, ncores=NULL)
Arguments
fit |
An object of class
|
K |
The number of iterations in cross-validation. |
estimation |
Logical; if |
optimizer |
The type of optimization algorithm if estimation is |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
upper |
An optional named list giving the values for the upper bound of the space parameter
when the optimizer is |
n.fold |
Numeric; the percentage of data to be deleted (and predicted) in the cross-validation procedure. |
local |
Logical; If local is TRUE, then local kriging is performed. The default is FALSE. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood if local kriging is performed. |
maxdist |
Numeric; an optional positive value indicating the distance in the spatial neighborhood if local kriging is performed. |
maxtime |
Numeric; an optional positive value indicating the distance in the temporal neighborhood if local kriging is performed. |
sparse |
Logical; if |
type_krig |
String; the type of kriging. If |
which |
Numeric; In the case of bivariate cokriging it indicates which variable to predict. It can be 1 or 2 |
parallel |
Logical; if |
ncores |
Numeric; number of cores involved in parallelization. |
Value
Returns an object containing the following informations:
predicted |
A list of the predicted values in the CV procedure; |
data_to_pred |
A list of the data to predict in the CV procedure; |
mae |
The vector of mean absolute error in the CV procedure; |
mad |
The vector of median absolute error in the CV procedure; |
brie |
The vector of brie score in the CV procedure; |
rmse |
The vector of root mean squared error in the CV procedure; |
lscore |
The vector of log-score in the CV procedure; |
crps |
The vector of continuous ranked probability score in the CV procedure; |
Author(s)
Moreno Bevilacqua, moreno.bevilacqua89@gmail.com,https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, victor.morales@uv.cl, https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, chcaaman@ubiobio.cl,https://www.researchgate.net/profile/Christian-Caamano
See Also
Examples
library(GeoModels)
################################################################
########### Examples of spatial kriging ############
################################################################
model="Gaussian"
set.seed(79)
x = runif(400, 0, 1)
y = runif(400, 0, 1)
coords=cbind(x,y)
# Set the exponential cov parameters:
corrmodel = "GenWend"
mean=0; sill=5; nugget=0
scale=0.2;smooth=0;power2=4
param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2)
# Simulation of the spatial Gaussian random field:
data = GeoSim(coordx=coords, corrmodel=corrmodel,
param=param)$data
## estimation with pairwise likelihood
fixed=list(nugget=nugget,smooth=0,power2=power2)
start=list(mean=0,scale=scale,sill=1)
I=Inf
lower=list(mean=-I,scale=0,sill=0)
upper=list(mean= I,scale=I,sill=I)
# Maximum pairwise likelihood fitting :
fit = GeoFit(data, coordx=coords, corrmodel=corrmodel,model=model,
likelihood='Marginal', type='Pairwise',neighb=3,
optimizer="nlminb", lower=lower,upper=upper,
start=start,fixed=fixed)
#a=GeoCV(fit,K=100,estimation=TRUE)
#a$rmse