TopviewTopographicMap {GeneralizedUmatrix} | R Documentation |
Top view of the topographic map in 2D
Description
Fast visualization of the generalized U-matrix in 2D which visualizes high-dimensional distance and density based structurs of the combination two-dimensional scatter plots (projections) with high-dimensional data.
Usage
TopviewTopographicMap(GeneralizedUmatrix, BestMatchingUnits,
Cls, ClsColors = NULL, Imx = NULL,
ClsNames = NULL, BmSize = 6, DotLineWidth = 2,
alpha = 1, ...)
Arguments
GeneralizedUmatrix |
[1:Lines,1:Columns] U-matrix to be plotted, numerical matrix storing the U-heights, see [Thrun, 2018] for definition. |
BestMatchingUnits |
[1:n,1:2], Positions of bestmatches to be plotted onto the U-matrix |
Cls |
[1:n], numerical vector of classification of |
ClsColors |
Vector of colors that will be used to colorize the different classes |
Imx |
a mask (Imx) that will be used to cut out the U-matrix |
ClsNames |
If set: [1:k] character vector naming the k classes for the
legend. In this case, further parameters with the possibility to adjust are:
|
BmSize |
size(diameter) of the points in the visualizations. The points represent the BestMatchingUnits |
DotLineWidth |
... |
alpha |
... |
... |
|
Details
Please see plotTopographicMap
. This function is currently still experimental because not all functionallity is fully tested yet.
Value
plotly handler
Note
Names are currently under development, Imx in testing phase.
Author(s)
Tim Schreier, Luis Winckelmann, Michael Thrun
References
[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, doctoral dissertation 2017, Springer, Heidelberg, ISBN: 978-3-658-20539-3, doi:10.1007/978-3-658-20540-9, 2018.
[Thrun et al., 2016] Thrun, M. C., Lerch, F., Loetsch, J., & Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Vol. 24, Plzen, http://wscg.zcu.cz/wscg2016/short/A43-full.pdf, 2016.
See Also
Examples
data("Chainlink")
Data=Chainlink$Data
Cls=Chainlink$Cls
InputDistances=as.matrix(dist(Data))
res=cmdscale(d=InputDistances, k = 2, eig = TRUE, add = FALSE, x.ret = FALSE)
ProjectedPoints=as.matrix(res$points)
#see also ProjectionBasedClustering package for other common projection methods
resUmatrix=GeneralizedUmatrix(Data,ProjectedPoints)
## visualization
TopviewTopographicMap(GeneralizedUmatrix = resUmatrix$Umatrix,resUmatrix$Bestmatches)