MaxContribution {GaussSuppression} | R Documentation |
Find major contributions to aggregates
Description
Assuming aggregates are calculated via a dummy matrix by
z = t(x) %*% y
,
the n
largest contributions are found (value or index) for each aggregate.
Usage
MaxContribution(
x,
y,
n = 1,
decreasing = TRUE,
index = FALSE,
groups = NULL,
return2 = FALSE
)
Arguments
x |
A (sparse) dummy matrix |
y |
Vector of input values (contributors) |
n |
Number of contributors to be found |
decreasing |
Ordering parameter. Smallest contributors found when |
index |
Indices to |
groups |
When non-NULL, major contributions after aggregation within groups.
Cannot be combined with |
return2 |
When |
Value
Matrix with lagest contributions in first column, second largest in second column and so on.
Alternative output when using parameters index
or return2
.
Author(s)
Øyvind Langsrud
See Also
Examples
library(SSBtools)
z <- SSBtoolsData("sprt_emp_withEU")
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"
a <- ModelMatrix(z, formula = ~age + geo, crossTable = TRUE)
cbind(as.data.frame(a$crossTable), MaxContribution(a$modelMatrix, z$ths_per, 1))
cbind(a$crossTable, MaxContribution(a$modelMatrix, z$ths_per, 10))
cbind(a$crossTable, MaxContribution(a$modelMatrix, z$ths_per, 10, index = TRUE))
# Both types of output can be achieved with return2 = TRUE)
identical(MaxContribution(a$modelMatrix, z$ths_per, 10, return2 = TRUE),
list(value = MaxContribution(a$modelMatrix, z$ths_per, 10),
id = MaxContribution(a$modelMatrix, z$ths_per, 10, index = TRUE)))
b <- ModelMatrix(z[, -4], crossTable = TRUE, inputInOutput = c(TRUE, FALSE, TRUE))
k <- cbind(b$crossTable, MaxContribution(b$modelMatrix, z$ths_per, 10))
gr18 <- paste0("g", 1:18) # Each row is a group
k18 <- cbind(b$crossTable, MaxContribution(b$modelMatrix, z$ths_per, 10, groups = gr18))
identical(k, k18) # TRUE
gr9 <- paste0("g", as.integer(10 * z$ths_per)%%10) # 9 groups from decimal
k9 <- cbind(b$crossTable, MaxContribution(b$modelMatrix, z$ths_per, 10, groups = gr9))
k18[c(4, 13, 17, 33), ]
k9[c(4, 13, 17, 33), ]
# Group info obtained with return2 = TRUE
k9_id <- cbind(b$crossTable, MaxContribution(b$modelMatrix, z$ths_per, 10, groups = gr9,
return2 = TRUE)$id)
k9_id[c(4, 13, 17, 33), ]
# Verify similarity
z$y <- z$ths_per + (1:nrow(z))/100 # to avoid equal values
id1 <- MaxContribution(b$modelMatrix, z$y, 10, index = TRUE)
id1[!is.na(id1)] <- paste0("g", id1[!is.na(id1)])
mc2 <- MaxContribution(b$modelMatrix, z$y, 10, groups = gr18, return2 = TRUE)
id2 <- mc2$id
identical(id1, id2)