| RatQuad {GauPro} | R Documentation |
Rational Quadratic Kernel R6 class
Description
Rational Quadratic Kernel R6 class
Rational Quadratic Kernel R6 class
Usage
k_RatQuad(
beta,
alpha = 1,
s2 = 1,
D,
beta_lower = -8,
beta_upper = 6,
beta_est = TRUE,
alpha_lower = 1e-08,
alpha_upper = 100,
alpha_est = TRUE,
s2_lower = 1e-08,
s2_upper = 1e+08,
s2_est = TRUE,
useC = TRUE
)
Arguments
beta |
Initial beta value |
alpha |
Initial alpha value |
s2 |
Initial variance |
D |
Number of input dimensions of data |
beta_lower |
Lower bound for beta |
beta_upper |
Upper bound for beta |
beta_est |
Should beta be estimated? |
alpha_lower |
Lower bound for alpha |
alpha_upper |
Upper bound for alpha |
alpha_est |
Should alpha be estimated? |
s2_lower |
Lower bound for s2 |
s2_upper |
Upper bound for s2 |
s2_est |
Should s2 be estimated? |
useC |
Should C code used? Much faster if implemented. |
Format
R6Class object.
Value
Object of R6Class with methods for fitting GP model.
Super classes
GauPro::GauPro_kernel -> GauPro::GauPro_kernel_beta -> GauPro_kernel_RatQuad
Public fields
alphaalpha value (the exponent). Between 0 and 2.
logalphaLog of alpha
logalpha_lowerLower bound for log of alpha
logalpha_upperUpper bound for log of alpha
alpha_estShould alpha be estimated?
Methods
Public methods
Inherited methods
Method new()
Initialize kernel object
Usage
RatQuad$new( beta, alpha = 1, s2 = 1, D, beta_lower = -8, beta_upper = 6, beta_est = TRUE, alpha_lower = 1e-08, alpha_upper = 100, alpha_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE )
Arguments
betaInitial beta value
alphaInitial alpha value
s2Initial variance
DNumber of input dimensions of data
beta_lowerLower bound for beta
beta_upperUpper bound for beta
beta_estShould beta be estimated?
alpha_lowerLower bound for alpha
alpha_upperUpper bound for alpha
alpha_estShould alpha be estimated?
s2_lowerLower bound for s2
s2_upperUpper bound for s2
s2_estShould s2 be estimated?
useCShould C code used? Much faster if implemented.
Method k()
Calculate covariance between two points
Usage
RatQuad$k( x, y = NULL, beta = self$beta, logalpha = self$logalpha, s2 = self$s2, params = NULL )
Arguments
xvector.
yvector, optional. If excluded, find correlation of x with itself.
betaCorrelation parameters.
logalphaA correlation parameter
s2Variance parameter.
paramsparameters to use instead of beta and s2.
Method kone()
Find covariance of two points
Usage
RatQuad$kone(x, y, beta, theta, alpha, s2)
Arguments
xvector
yvector
betacorrelation parameters on log scale
thetacorrelation parameters on regular scale
alphaA correlation parameter
s2Variance parameter
Method dC_dparams()
Derivative of covariance with respect to parameters
Usage
RatQuad$dC_dparams(params = NULL, X, C_nonug, C, nug)
Arguments
paramsKernel parameters
Xmatrix of points in rows
C_nonugCovariance without nugget added to diagonal
CCovariance with nugget
nugValue of nugget
Method dC_dx()
Derivative of covariance with respect to X
Usage
RatQuad$dC_dx(XX, X, theta, beta = self$beta, alpha = self$alpha, s2 = self$s2)
Arguments
XXmatrix of points
Xmatrix of points to take derivative with respect to
thetaCorrelation parameters
betalog of theta
alphaparameter
s2Variance parameter
Method param_optim_start()
Starting point for parameters for optimization
Usage
RatQuad$param_optim_start( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
Method param_optim_start0()
Starting point for parameters for optimization
Usage
RatQuad$param_optim_start0( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
Method param_optim_lower()
Lower bounds of parameters for optimization
Usage
RatQuad$param_optim_lower( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
RatQuad$param_optim_upper( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
Method set_params_from_optim()
Set parameters from optimization output
Usage
RatQuad$set_params_from_optim( optim_out, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
optim_outOutput from optimization
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
Method print()
Print this object
Usage
RatQuad$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
RatQuad$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
k1 <- RatQuad$new(beta=0, alpha=0)