RatQuad {GauPro} | R Documentation |
Rational Quadratic Kernel R6 class
Description
Rational Quadratic Kernel R6 class
Rational Quadratic Kernel R6 class
Usage
k_RatQuad(
beta,
alpha = 1,
s2 = 1,
D,
beta_lower = -8,
beta_upper = 6,
beta_est = TRUE,
alpha_lower = 1e-08,
alpha_upper = 100,
alpha_est = TRUE,
s2_lower = 1e-08,
s2_upper = 1e+08,
s2_est = TRUE,
useC = TRUE
)
Arguments
beta |
Initial beta value |
alpha |
Initial alpha value |
s2 |
Initial variance |
D |
Number of input dimensions of data |
beta_lower |
Lower bound for beta |
beta_upper |
Upper bound for beta |
beta_est |
Should beta be estimated? |
alpha_lower |
Lower bound for alpha |
alpha_upper |
Upper bound for alpha |
alpha_est |
Should alpha be estimated? |
s2_lower |
Lower bound for s2 |
s2_upper |
Upper bound for s2 |
s2_est |
Should s2 be estimated? |
useC |
Should C code used? Much faster if implemented. |
Format
R6Class
object.
Value
Object of R6Class
with methods for fitting GP model.
Super classes
GauPro::GauPro_kernel
-> GauPro::GauPro_kernel_beta
-> GauPro_kernel_RatQuad
Public fields
alpha
alpha value (the exponent). Between 0 and 2.
logalpha
Log of alpha
logalpha_lower
Lower bound for log of alpha
logalpha_upper
Upper bound for log of alpha
alpha_est
Should alpha be estimated?
Methods
Public methods
Inherited methods
Method new()
Initialize kernel object
Usage
RatQuad$new( beta, alpha = 1, s2 = 1, D, beta_lower = -8, beta_upper = 6, beta_est = TRUE, alpha_lower = 1e-08, alpha_upper = 100, alpha_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE )
Arguments
beta
Initial beta value
alpha
Initial alpha value
s2
Initial variance
D
Number of input dimensions of data
beta_lower
Lower bound for beta
beta_upper
Upper bound for beta
beta_est
Should beta be estimated?
alpha_lower
Lower bound for alpha
alpha_upper
Upper bound for alpha
alpha_est
Should alpha be estimated?
s2_lower
Lower bound for s2
s2_upper
Upper bound for s2
s2_est
Should s2 be estimated?
useC
Should C code used? Much faster if implemented.
Method k()
Calculate covariance between two points
Usage
RatQuad$k( x, y = NULL, beta = self$beta, logalpha = self$logalpha, s2 = self$s2, params = NULL )
Arguments
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
beta
Correlation parameters.
logalpha
A correlation parameter
s2
Variance parameter.
params
parameters to use instead of beta and s2.
Method kone()
Find covariance of two points
Usage
RatQuad$kone(x, y, beta, theta, alpha, s2)
Arguments
x
vector
y
vector
beta
correlation parameters on log scale
theta
correlation parameters on regular scale
alpha
A correlation parameter
s2
Variance parameter
Method dC_dparams()
Derivative of covariance with respect to parameters
Usage
RatQuad$dC_dparams(params = NULL, X, C_nonug, C, nug)
Arguments
params
Kernel parameters
X
matrix of points in rows
C_nonug
Covariance without nugget added to diagonal
C
Covariance with nugget
nug
Value of nugget
Method dC_dx()
Derivative of covariance with respect to X
Usage
RatQuad$dC_dx(XX, X, theta, beta = self$beta, alpha = self$alpha, s2 = self$s2)
Arguments
XX
matrix of points
X
matrix of points to take derivative with respect to
theta
Correlation parameters
beta
log of theta
alpha
parameter
s2
Variance parameter
Method param_optim_start()
Starting point for parameters for optimization
Usage
RatQuad$param_optim_start( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
jitter
Should there be a jitter?
y
Output
beta_est
Is beta being estimated?
alpha_est
Is alpha being estimated?
s2_est
Is s2 being estimated?
Method param_optim_start0()
Starting point for parameters for optimization
Usage
RatQuad$param_optim_start0( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
jitter
Should there be a jitter?
y
Output
beta_est
Is beta being estimated?
alpha_est
Is alpha being estimated?
s2_est
Is s2 being estimated?
Method param_optim_lower()
Lower bounds of parameters for optimization
Usage
RatQuad$param_optim_lower( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
beta_est
Is beta being estimated?
alpha_est
Is alpha being estimated?
s2_est
Is s2 being estimated?
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
RatQuad$param_optim_upper( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
beta_est
Is beta being estimated?
alpha_est
Is alpha being estimated?
s2_est
Is s2 being estimated?
Method set_params_from_optim()
Set parameters from optimization output
Usage
RatQuad$set_params_from_optim( optim_out, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
Arguments
optim_out
Output from optimization
beta_est
Is beta being estimated?
alpha_est
Is alpha being estimated?
s2_est
Is s2 being estimated?
Method print()
Print this object
Usage
RatQuad$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
RatQuad$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
k1 <- RatQuad$new(beta=0, alpha=0)