GauPro_kernel_beta {GauPro} | R Documentation |
Beta Kernel R6 class
Description
Beta Kernel R6 class
Beta Kernel R6 class
Format
R6Class
object.
Details
This is the base structure for a kernel that uses beta = log10(theta) for the lengthscale parameter. It standardizes the params because they all use the same underlying structure. Kernels that inherit this only need to implement kone and dC_dparams.
Value
Object of R6Class
with methods for fitting GP model.
Super class
GauPro::GauPro_kernel
-> GauPro_kernel_beta
Public fields
beta
Parameter for correlation. Log of theta.
beta_est
Should beta be estimated?
beta_lower
Lower bound of beta
beta_upper
Upper bound of beta
beta_length
length of beta
s2
variance
logs2
Log of s2
logs2_lower
Lower bound of logs2
logs2_upper
Upper bound of logs2
s2_est
Should s2 be estimated?
useC
Should C code used? Much faster.
Methods
Public methods
Inherited methods
Method new()
Initialize kernel object
Usage
GauPro_kernel_beta$new( beta, s2 = 1, D, beta_lower = -8, beta_upper = 6, beta_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE )
Arguments
beta
Initial beta value
s2
Initial variance
D
Number of input dimensions of data
beta_lower
Lower bound for beta
beta_upper
Upper bound for beta
beta_est
Should beta be estimated?
s2_lower
Lower bound for s2
s2_upper
Upper bound for s2
s2_est
Should s2 be estimated?
useC
Should C code used? Much faster.
Method k()
Calculate covariance between two points
Usage
GauPro_kernel_beta$k( x, y = NULL, beta = self$beta, s2 = self$s2, params = NULL )
Arguments
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
beta
Correlation parameters. Log of theta.
s2
Variance parameter.
params
parameters to use instead of beta and s2.
Method kone()
Calculate covariance between two points
Usage
GauPro_kernel_beta$kone(x, y, beta, theta, s2)
Arguments
x
vector.
y
vector.
beta
Correlation parameters. Log of theta.
theta
Correlation parameters.
s2
Variance parameter.
Method param_optim_start()
Starting point for parameters for optimization
Usage
GauPro_kernel_beta$param_optim_start( jitter = F, y, beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
jitter
Should there be a jitter?
y
Output
beta_est
Is beta being estimated?
s2_est
Is s2 being estimated?
Method param_optim_start0()
Starting point for parameters for optimization
Usage
GauPro_kernel_beta$param_optim_start0( jitter = F, y, beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
jitter
Should there be a jitter?
y
Output
beta_est
Is beta being estimated?
s2_est
Is s2 being estimated?
Method param_optim_lower()
Upper bounds of parameters for optimization
Usage
GauPro_kernel_beta$param_optim_lower( beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
beta_est
Is beta being estimated?
s2_est
Is s2 being estimated?
p_est
Is p being estimated?
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
GauPro_kernel_beta$param_optim_upper( beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
beta_est
Is beta being estimated?
s2_est
Is s2 being estimated?
p_est
Is p being estimated?
Method set_params_from_optim()
Set parameters from optimization output
Usage
GauPro_kernel_beta$set_params_from_optim( optim_out, beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
optim_out
Output from optimization
beta_est
Is beta being estimated?
s2_est
Is s2 being estimated?
Method C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
Usage
GauPro_kernel_beta$C_dC_dparams(params = NULL, X, nug)
Arguments
params
Kernel parameters
X
matrix of points in rows
nug
Value of nugget
Method s2_from_params()
Get s2 from params vector
Usage
GauPro_kernel_beta$s2_from_params(params, s2_est = self$s2_est)
Arguments
params
parameter vector
s2_est
Is s2 being estimated?
Method clone()
The objects of this class are cloneable with this method.
Usage
GauPro_kernel_beta$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
#k1 <- Matern52$new(beta=0)