| GauPro_kernel_beta {GauPro} | R Documentation |
Beta Kernel R6 class
Description
Beta Kernel R6 class
Beta Kernel R6 class
Format
R6Class object.
Details
This is the base structure for a kernel that uses beta = log10(theta) for the lengthscale parameter. It standardizes the params because they all use the same underlying structure. Kernels that inherit this only need to implement kone and dC_dparams.
Value
Object of R6Class with methods for fitting GP model.
Super class
GauPro::GauPro_kernel -> GauPro_kernel_beta
Public fields
betaParameter for correlation. Log of theta.
beta_estShould beta be estimated?
beta_lowerLower bound of beta
beta_upperUpper bound of beta
beta_lengthlength of beta
s2variance
logs2Log of s2
logs2_lowerLower bound of logs2
logs2_upperUpper bound of logs2
s2_estShould s2 be estimated?
useCShould C code used? Much faster.
Methods
Public methods
Inherited methods
Method new()
Initialize kernel object
Usage
GauPro_kernel_beta$new( beta, s2 = 1, D, beta_lower = -8, beta_upper = 6, beta_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE )
Arguments
betaInitial beta value
s2Initial variance
DNumber of input dimensions of data
beta_lowerLower bound for beta
beta_upperUpper bound for beta
beta_estShould beta be estimated?
s2_lowerLower bound for s2
s2_upperUpper bound for s2
s2_estShould s2 be estimated?
useCShould C code used? Much faster.
Method k()
Calculate covariance between two points
Usage
GauPro_kernel_beta$k( x, y = NULL, beta = self$beta, s2 = self$s2, params = NULL )
Arguments
xvector.
yvector, optional. If excluded, find correlation of x with itself.
betaCorrelation parameters. Log of theta.
s2Variance parameter.
paramsparameters to use instead of beta and s2.
Method kone()
Calculate covariance between two points
Usage
GauPro_kernel_beta$kone(x, y, beta, theta, s2)
Arguments
xvector.
yvector.
betaCorrelation parameters. Log of theta.
thetaCorrelation parameters.
s2Variance parameter.
Method param_optim_start()
Starting point for parameters for optimization
Usage
GauPro_kernel_beta$param_optim_start( jitter = F, y, beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
Method param_optim_start0()
Starting point for parameters for optimization
Usage
GauPro_kernel_beta$param_optim_start0( jitter = F, y, beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
Method param_optim_lower()
Upper bounds of parameters for optimization
Usage
GauPro_kernel_beta$param_optim_lower( beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
p_estIs p being estimated?
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
GauPro_kernel_beta$param_optim_upper( beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
p_estIs p being estimated?
Method set_params_from_optim()
Set parameters from optimization output
Usage
GauPro_kernel_beta$set_params_from_optim( optim_out, beta_est = self$beta_est, s2_est = self$s2_est )
Arguments
optim_outOutput from optimization
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
Method C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
Usage
GauPro_kernel_beta$C_dC_dparams(params = NULL, X, nug)
Arguments
paramsKernel parameters
Xmatrix of points in rows
nugValue of nugget
Method s2_from_params()
Get s2 from params vector
Usage
GauPro_kernel_beta$s2_from_params(params, s2_est = self$s2_est)
Arguments
paramsparameter vector
s2_estIs s2 being estimated?
Method clone()
The objects of this class are cloneable with this method.
Usage
GauPro_kernel_beta$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
#k1 <- Matern52$new(beta=0)