numinoisy {GPoM} | R Documentation |
Generates time series of deterministic-behavior with stochatic perturbations (measurement and/or dynamical noise)
Description
Generates time series from Ordinary Differential Equations perturbed by dynamical and/or measurement noises
Usage
numinoisy(
x0,
t,
K,
varData = NULL,
txVarBruitA = NULL,
txVarBruitM = NULL,
varBruitA = NULL,
varBruitM = NULL,
taux = NULL,
freq = NULL,
variables = NULL,
method = NULL
)
Arguments
x0 |
The initial conditions. Should be a vector which size must be equal
to the model dimension |
t |
A vector providing all the dates for which the output are expected. |
K |
The Ordinary Differential Equations used to model the dynamics.
The number of column should correspond to the number of variables, the
number of lines to the number of parameters following the convention
defined by |
varData |
A vector of size |
txVarBruitA |
A vector defining the ratio of ADDITIVE noise for each variable of the dynamical system in ODE. The additive noise is added at the end of the numerical integration process. The ratio is defined relatively to the signal variance of each variable. |
txVarBruitM |
A vector defining the ratio of DYNAMICAL noise for each variable of the dynamical system in ODE. This noise is a perturbation added at each numerical integration step. The ratio is defined relatively to the signal variance of each variable. |
varBruitA |
A vector defining the variance of ADDITIVE noise for each variable of the dynamical system in ODE. The additive noise is added at the end of the numerical integration process. |
varBruitM |
A vector defining the variance of DYNAMICAL noise for each variable of the dynamical system in ODE. This noise is a perturbation added at each numerical integration step. |
taux |
Generates random gaps in time series. Parameter |
freq |
Subsamples the time series. Parameter |
variables |
Defines which variables must be generated. |
method |
Defines the numerical integration method to be used.
The fourth-order Runge-Kutta method is used by default
( |
Value
A list of two variables:
$donnees
The integrated trajectory (first column is the time,
next columns are the model variables)
$bruitM
The level of dynamical noise
$bruitA
The level of additive noise
$vectBruitM
The vector of the dynamical noise used to produce
the time series
$vectBruitA
The vector of the additive noise used to produce
the time series
$ecart_type
The level standard deviation
Author(s)
Sylvain Mangiarotti, Malika Chassan
Examples
#############
# Example 1 #
#############
# Rossler Model formulation
# The model dimension
nVar = 3
# maximal polynomial degree
dMax = 2
a = 0.520
b = 2
c = 4
Eq1 <- c(0,-1, 0,-1, 0, 0, 0, 0, 0, 0)
Eq2 <- c(0, 0, 0, a, 0, 0, 1, 0, 0, 0)
Eq3 <- c(b,-c, 0, 0, 0, 0, 0, 1, 0, 0)
K <- cbind(Eq1, Eq2, Eq3)
# Edit the equations
visuEq(K, nVar, dMax)
# initial conditions
v0 <- c(-0.6, 0.6, 0.4)
# output time required
timeOut = (0:800)/50
# variance of additive noise
varBruitA = c(0,0,0)^2
# variance of multiplitive noise
varBruitM = c(2E-2, 0, 2E-2)^2
# numerical integration with noise
intgr <- numinoisy(v0, timeOut, K, varBruitA = varBruitA, varBruitM = varBruitM, freq = 1)
# Plot of the simulated time series obtained
dev.new()
plot(intgr$donnees[,2], intgr$donnees[,3], type='l',
main='phase portrait', xlab='x(t)', ylab = 'y(t)')
dev.new()
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
par(mfrow = c(3, 1))
plot(intgr$donnees[,1], intgr$donnees[,2], type='l',
main='phase portrait', xlab='x(t)', ylab = 'y(t)')
lines(intgr$donnees[,1], intgr$vectBruitM[,2]*10, type='l',
main='phase portrait', xlab='x(t)', ylab = 'e(t)*10', col='red')
plot(intgr$donnees[,1], intgr$donnees[,3], type='l',
main='phase portrait', xlab='x(t)', ylab = 'y(t)')
lines(intgr$donnees[,1], intgr$vectBruitM[,3]*10, type='l',
main='phase portrait', xlab='x(t)', ylab = 'e(t)*10', col='red')
plot(intgr$donnees[,1], intgr$donnees[,4], type='l',
main='phase portrait', xlab='x(t)', ylab = 'y(t)')
lines(intgr$donnees[,1], intgr$vectBruitM[,4]*10, type='l',
main='phase portrait', xlab='x(t)', ylab = 'e(t)*10', col='red')