plot {GPfit} | R Documentation |
Plotting GP model fits
Description
Plots the predicted response and mean squared error (MSE) surfaces for simulators with 1 and 2 dimensional inputs (i.e. d = 1,2).
Usage
## S3 method for class 'GP'
plot(x, M = 1, range = c(0, 1), resolution = 50,
colors = c("black", "blue", "red"), line_type = c(1, 2), pch = 20,
cex = 1, legends = FALSE, surf_check = FALSE, response = TRUE,
...)
Arguments
x |
a class |
M |
the number of iterations for use in prediction. See
|
range |
the input range for plotting (default set to |
resolution |
the number of points along a coordinate in the specified
|
colors |
a vector of length 3 assigning |
line_type |
a vector of length 2 assigning |
pch |
a parameter defining the plotting character for the training
design points, see ‘pch’ for possible options in |
cex |
a parameter defining the size of the |
legends |
a parameter that controls the inclusion of a
|
surf_check |
logical, switch between 3d surface and 2d level/contour
plotting, the default of |
response |
logical, switch between predicted response and error (MSE)
plots, the default of |
... |
Methods (by class)
-
GP
: Theplot
method creates a graphics plot for 1-D fits and lattice plot for 2-D fits.
Author(s)
Blake MacDonald, Hugh Chipman, Pritam Ranjan
References
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
See Also
GP_fit
for estimating the parameters of the GP model;
predict.GP
for predicting the response and error surfaces;
par
for additional plotting characters and line types for
1 dimensional plots;
wireframe
and levelplot
for additional plotting settings in 2 dimensions.
Examples
## 1D Example 1
n <- 5
d <- 1
computer_simulator <- function(x){
x <- 2 * x + 0.5
y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4
return(y)
}
set.seed(3)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x,y)
plot(GPmodel)
## 1D Example 2
n <- 7
d <- 1
computer_simulator <- function(x) {
y <- log(x + 0.1) + sin(5 * pi * x)
return(y)
}
set.seed(1)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
## Plotting with changes from the default line type and characters
plot(GPmodel, resolution = 100, line_type = c(6,2), pch = 5)
## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
x1 <- 4 * x[, 1] - 2
x2 <- 4 * x[, 2] - 2
t1 <- 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 +
6 * x1 * x2 + 3 * x2^2)
t2 <- 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 -
36 * x1 * x2 + 27 * x2^2)
y <- t1 * t2
return(y)
}
n <- 30
d <- 2
set.seed(1)
x <- lhs::maximinLHS(n, d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
## Basic level plot
plot(GPmodel)
## Adding Contours and increasing the number of levels
plot(GPmodel, contour = TRUE, cuts = 50, pretty = TRUE)
## Plotting the Response Surface
plot(GPmodel, surf_check = TRUE)
## Plotting the Error Surface with color
plot(GPmodel, surf_check = TRUE, response = FALSE, shade = TRUE)