projector {GNE} | R Documentation |
Projection of a point on a set
Description
Projection of a point z
on the set defined by the constraints g(x) <= 0
.
Usage
projector(z, g, jacg, bounds=c(0, 10), echo=FALSE, ...)
Arguments
z |
The point to project. |
g |
The constraint function. |
jacg |
The jacobian of the constraint function. |
bounds |
bounds for the randomized initial iterate. |
echo |
a logical to plot traces. |
... |
further arguments to pass to |
Details
Find a point x
in the set K
which minimizes the Euclidean distance ||z - x||^2
,
where the set K
is x, g(x) <= 0
. The Optimization is carried out by the constrOptim.nl
function of the package alabama.
Value
A vector x
.
Author(s)
Christophe Dutang
See Also
See also GNE
.
Examples
# 1. the rectangle set
#
g <- function(x)
c(x - 3, 1 - x)
jacg <- function(x)
rbind(
diag( rep(1, length(x)) ),
diag( rep(-1, length(x)) )
)
z <- runif(2, 3, 4)
#computation
projz <- projector(z, g, jacg)
#plot
plot(c(1, 3), c(1, 1), xlim=c(0, 4), ylim=c(0,4), type="l", col="blue")
lines(c(3, 3), c(1, 3), col="blue")
lines(c(3, 1), c(3, 3), col="blue")
lines(c(1, 1), c(3, 1), col="blue")
points(z[1], z[2], col="red")
points(projz[1], projz[2], col="red", pch="+")
z <- runif(2) + c(1, 0)
projz <- projector(z, g, jacg)
points(z[1], z[2], col="green")
points(projz[1], projz[2], col="green", pch="+")
# 2. the circle set
#
g <- function(x) sum((x-2)^2)-1
jacg <- function(x) as.matrix( 2*(x-2) )
z <- runif(2) + c(1, 0)
#computation
projz <- projector(z, g, jacg)
#plot
plot(c(1, 3), c(1, 1), xlim=c(0, 4), ylim=c(0,4), type="n", col="blue")
symbols(2, 2, circles=1, fg="blue", add=TRUE, inches=FALSE)
points(z[1], z[2], col="red")
points(projz[1], projz[2], col="red", pch="+")
z <- c(runif(1, 3, 4), runif(1, 1, 2))
projz <- projector(z, g, jacg)
points(z[1], z[2], col="green")
points(projz[1], projz[2], col="green", pch="+")
[Package GNE version 0.99-5 Index]