SSR {GNE} | R Documentation |
SemiSmooth Reformulation
Description
functions of the SemiSmooth Reformulation of the GNEP
Usage
funSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr, grconstr, arggrconstr,
compl, argcompl, dimmu, joint, argjoint, grjoint, arggrjoint, echo=FALSE)
jacSSR(z, dimx, dimlam, heobj, argheobj, constr, argconstr, grconstr, arggrconstr,
heconstr, argheconstr, gcompla, gcomplb, argcompl, dimmu, joint, argjoint,
grjoint, arggrjoint, hejoint, arghejoint, echo=FALSE)
Arguments
z |
a numeric vector |
dimx |
a vector of dimension for |
dimlam |
a vector of dimension for |
grobj |
gradient of the objective function, see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
constr |
constraint function, see details. |
argconstr |
a list of additional arguments of the constraint function. |
grconstr |
gradient of the constraint function, see details. |
arggrconstr |
a list of additional arguments of the constraint gradient. |
compl |
the complementarity function with (at least) two arguments: |
argcompl |
list of possible additional arguments for |
dimmu |
a vector of dimension for |
joint |
joint function, see details. |
argjoint |
a list of additional arguments of the joint function. |
grjoint |
gradient of the joint function, see details. |
arggrjoint |
a list of additional arguments of the joint gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
heconstr |
Hessian of the constraint function, see details. |
argheconstr |
a list of additional arguments of the constraint Hessian. |
gcompla |
derivative of the complementarity function w.r.t. the first argument. |
gcomplb |
derivative of the complementarity function w.r.t. the second argument. |
hejoint |
Hessian of the joint function, see details. |
arghejoint |
a list of additional arguments of the joint Hessian. |
echo |
a logical to show some traces. |
Details
Compute the SemiSmooth Reformulation of the GNEP: the Generalized Nash equilibrium problem is defined
by objective functions Obj
with player variables x
defined in dimx
and
may have player-dependent constraint functions g
of dimension dimlam
and/or a common shared joint function h
of dimension dimmu
,
where the Lagrange multiplier are lambda
and mu
, respectively,
see F. Facchinei et al.(2009) where there is no joint function.
- Arguments of the Phi function
-
The arguments which are functions must respect the following features
grobj
-
The gradient
Grad Obj
of an objective functionObj
(to be minimized) must have 3 arguments forGrad Obj(z, playnum, ideriv)
: vectorz
, player number, derivative index , and optionnally additional arguments inarggrobj
. constr
-
The constraint function
g
must have 2 arguments: vectorz
, player number, such thatg(z, playnum) <= 0
. Optionnally,g
may have additional arguments inargconstr
. grconstr
-
The gradient of the constraint function
g
must have 3 arguments: vectorz
, player number, derivative index, and optionnally additional arguments inarggrconstr
. compl
It must have two arguments and optionnally additional arguments in
argcompl
. A typical example is the minimum function.joint
-
The constraint function
h
must have 1 argument: vectorz
, such thath(z) <= 0
. Optionnally,h
may have additional arguments inargjoint
. grjoint
-
The gradient of the constraint function
h
must have 2 arguments: vectorz
, derivative index, and optionnally additional arguments inarggrjoint
.
- Arguments of the Jacobian of Phi
-
The arguments which are functions must respect the following features
heobj
It must have 4 arguments: vector
z
, player number, two derivative indexes and optionnally additional arguments inargheobj
.heconstr
It must have 4 arguments: vector
z
, player number, two derivative indexes and optionnally additional arguments inargheconstr
.gcompla
,gcomplb
It must have two arguments and optionnally additional arguments in
argcompl
.hejoint
It must have 3 arguments: vector
z
, two derivative indexes and optionnally additional arguments inarghejoint
.
See the example below.
Value
A vector for funSSR
or a matrix for jacSSR
.
Author(s)
Christophe Dutang
References
F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.
See Also
See also GNE.nseq
.
Examples
# (1) associated objective functions
#
dimx <- c(2, 2, 3)
#Gr_x_j O_i(x)
grfullob <- function(x, i, j)
{
x <- x[1:7]
if(i == 1)
{
grad <- 3*(x - 1:7)^2
}
if(i == 2)
{
grad <- 1:7*(x - 1:7)^(0:6)
}
if(i == 3)
{
s <- x[5]^2 + x[6]^2 + x[7]^2 - 5
grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
}
grad[j]
}
#Gr_x_k Gr_x_j O_i(x)
hefullob <- function(x, i, j, k)
{
x <- x[1:7]
if(i == 1)
{
he <- diag( 6*(x - 1:7) )
}
if(i == 2)
{
he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
}
if(i == 3)
{
s <- x[5]^2 + x[6]^2 + x[7]^2
he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
}
he[j,k]
}
# (2) constraint linked functions
#
dimlam <- c(1, 2, 2)
#constraint function g_i(x)
g <- function(x, i)
{
x <- x[1:7]
if(i == 1)
res <- sum( x^(1:7) ) -7
if(i == 2)
res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
if(i == 3)
res <- c(sum(x^2) + 1, 100 - sum(x))
res
}
#Gr_x_j g_i(x)
grfullg <- function(x, i, j)
{
x <- x[1:7]
if(i == 1)
{
grad <- (1:7) * x ^ (0:6)
}
if(i == 2)
{
grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
grad <- cbind(grad, -1)
}
if(i == 3)
{
grad <- cbind(2*x, -1)
}
if(i == 1)
res <- grad[j]
if(i != 1)
res <- grad[j,]
as.numeric(res)
}
#Gr_x_k Gr_x_j g_i(x)
hefullg <- function(x, i, j, k)
{
x <- x[1:7]
if(i == 1)
{
he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
}
if(i == 2)
{
he1 <- matrix(0, 7, 7)
he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
he2 <- matrix(0, 7, 7)
}
if(i == 3)
{
he1 <- diag(rep(2, 7))
he2 <- matrix(0, 7, 7)
}
if(i != 1)
return( c(he1[j, k], he2[j, k]) )
else
return( he1[j, k] )
}
# (3) compute Phi
#
z <- rexp(sum(dimx) + sum(dimlam))
n <- sum(dimx)
m <- sum(dimlam)
x <- z[1:n]
lam <- z[(n+1):(n+m)]
resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)
check <- c(grfullob(x, 1, 1) + lam[1] * grfullg(x, 1, 1),
grfullob(x, 1, 2) + lam[1] * grfullg(x, 1, 2),
grfullob(x, 2, 3) + lam[2:3] %*% grfullg(x, 2, 3),
grfullob(x, 2, 4) + lam[2:3] %*% grfullg(x, 2, 4),
grfullob(x, 3, 5) + lam[4:5] %*% grfullg(x, 3, 5),
grfullob(x, 3, 6) + lam[4:5] %*% grfullg(x, 3, 6),
grfullob(x, 3, 7) + lam[4:5] %*% grfullg(x, 3, 7),
phiFB( -g(x, 1), lam[1]),
phiFB( -g(x, 2)[1], lam[2]),
phiFB( -g(x, 2)[2], lam[3]),
phiFB( -g(x, 3)[1], lam[4]),
phiFB( -g(x, 3)[2], lam[5]))
#check
cat("\n\n________________________________________\n\n")
#part A
print(cbind(check, res=as.numeric(resphi))[1:n, ])
#part B
print(cbind(check, res=as.numeric(resphi))[(n+1):(n+m), ])
# (4) compute Jac Phi
#
resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g, grconstr=grfullg,
heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB)
#check
cat("\n\n________________________________________\n\n")
cat("\n\npart A\n\n")
checkA <-
rbind(
c(hefullob(x, 1, 1, 1) + lam[1]*hefullg(x, 1, 1, 1),
hefullob(x, 1, 1, 2) + lam[1]*hefullg(x, 1, 1, 2),
hefullob(x, 1, 1, 3) + lam[1]*hefullg(x, 1, 1, 3),
hefullob(x, 1, 1, 4) + lam[1]*hefullg(x, 1, 1, 4),
hefullob(x, 1, 1, 5) + lam[1]*hefullg(x, 1, 1, 5),
hefullob(x, 1, 1, 6) + lam[1]*hefullg(x, 1, 1, 6),
hefullob(x, 1, 1, 7) + lam[1]*hefullg(x, 1, 1, 7)
),
c(hefullob(x, 1, 2, 1) + lam[1]*hefullg(x, 1, 2, 1),
hefullob(x, 1, 2, 2) + lam[1]*hefullg(x, 1, 2, 2),
hefullob(x, 1, 2, 3) + lam[1]*hefullg(x, 1, 2, 3),
hefullob(x, 1, 2, 4) + lam[1]*hefullg(x, 1, 2, 4),
hefullob(x, 1, 2, 5) + lam[1]*hefullg(x, 1, 2, 5),
hefullob(x, 1, 2, 6) + lam[1]*hefullg(x, 1, 2, 6),
hefullob(x, 1, 2, 7) + lam[1]*hefullg(x, 1, 2, 7)
),
c(hefullob(x, 2, 3, 1) + lam[2:3] %*% hefullg(x, 2, 3, 1),
hefullob(x, 2, 3, 2) + lam[2:3] %*% hefullg(x, 2, 3, 2),
hefullob(x, 2, 3, 3) + lam[2:3] %*% hefullg(x, 2, 3, 3),
hefullob(x, 2, 3, 4) + lam[2:3] %*% hefullg(x, 2, 3, 4),
hefullob(x, 2, 3, 5) + lam[2:3] %*% hefullg(x, 2, 3, 5),
hefullob(x, 2, 3, 6) + lam[2:3] %*% hefullg(x, 2, 3, 6),
hefullob(x, 2, 3, 7) + lam[2:3] %*% hefullg(x, 2, 3, 7)
),
c(hefullob(x, 2, 4, 1) + lam[2:3] %*% hefullg(x, 2, 4, 1),
hefullob(x, 2, 4, 2) + lam[2:3] %*% hefullg(x, 2, 4, 2),
hefullob(x, 2, 4, 3) + lam[2:3] %*% hefullg(x, 2, 4, 3),
hefullob(x, 2, 4, 4) + lam[2:3] %*% hefullg(x, 2, 4, 4),
hefullob(x, 2, 4, 5) + lam[2:3] %*% hefullg(x, 2, 4, 5),
hefullob(x, 2, 4, 6) + lam[2:3] %*% hefullg(x, 2, 4, 6),
hefullob(x, 2, 4, 7) + lam[2:3] %*% hefullg(x, 2, 4, 7)
),
c(hefullob(x, 3, 5, 1) + lam[4:5] %*% hefullg(x, 3, 5, 1),
hefullob(x, 3, 5, 2) + lam[4:5] %*% hefullg(x, 3, 5, 2),
hefullob(x, 3, 5, 3) + lam[4:5] %*% hefullg(x, 3, 5, 3),
hefullob(x, 3, 5, 4) + lam[4:5] %*% hefullg(x, 3, 5, 4),
hefullob(x, 3, 5, 5) + lam[4:5] %*% hefullg(x, 3, 5, 5),
hefullob(x, 3, 5, 6) + lam[4:5] %*% hefullg(x, 3, 5, 6),
hefullob(x, 3, 5, 7) + lam[4:5] %*% hefullg(x, 3, 5, 7)
),
c(hefullob(x, 3, 6, 1) + lam[4:5] %*% hefullg(x, 3, 6, 1),
hefullob(x, 3, 6, 2) + lam[4:5] %*% hefullg(x, 3, 6, 2),
hefullob(x, 3, 6, 3) + lam[4:5] %*% hefullg(x, 3, 6, 3),
hefullob(x, 3, 6, 4) + lam[4:5] %*% hefullg(x, 3, 6, 4),
hefullob(x, 3, 6, 5) + lam[4:5] %*% hefullg(x, 3, 6, 5),
hefullob(x, 3, 6, 6) + lam[4:5] %*% hefullg(x, 3, 6, 6),
hefullob(x, 3, 6, 7) + lam[4:5] %*% hefullg(x, 3, 6, 7)
),
c(hefullob(x, 3, 7, 1) + lam[4:5] %*% hefullg(x, 3, 7, 1),
hefullob(x, 3, 7, 2) + lam[4:5] %*% hefullg(x, 3, 7, 2),
hefullob(x, 3, 7, 3) + lam[4:5] %*% hefullg(x, 3, 7, 3),
hefullob(x, 3, 7, 4) + lam[4:5] %*% hefullg(x, 3, 7, 4),
hefullob(x, 3, 7, 5) + lam[4:5] %*% hefullg(x, 3, 7, 5),
hefullob(x, 3, 7, 6) + lam[4:5] %*% hefullg(x, 3, 7, 6),
hefullob(x, 3, 7, 7) + lam[4:5] %*% hefullg(x, 3, 7, 7)
)
)
print(resjacphi[1:n, 1:n] - checkA)
cat("\n\n________________________________________\n\n")
cat("\n\npart B\n\n")
checkB <-
rbind(
cbind(c(grfullg(x, 1, 1), grfullg(x, 1, 2)), c(0, 0), c(0, 0), c(0, 0), c(0, 0)),
cbind(c(0, 0), rbind(grfullg(x, 2, 3), grfullg(x, 2, 4)), c(0, 0), c(0, 0)),
cbind(c(0, 0, 0), c(0, 0, 0), c(0, 0, 0),
rbind(grfullg(x, 3, 5), grfullg(x, 3, 6), grfullg(x, 3, 7)))
)
print(resjacphi[1:n, (n+1):(n+m)] - checkB)
cat("\n\n________________________________________\n\n")
cat("\n\npart C\n\n")
gx <- c(g(x,1), g(x,2), g(x,3))
checkC <-
- t(
cbind(
rbind(
grfullg(x, 1, 1) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 2) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 3) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 4) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 5) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 6) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 7) * GrAphiFB(-gx, lam)[1]
),
rbind(
grfullg(x, 2, 1) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 2) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 3) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 4) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 5) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 6) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 7) * GrAphiFB(-gx, lam)[2:3]
),
rbind(
grfullg(x, 3, 1) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 2) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 3) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 4) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 5) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 6) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 7) * GrAphiFB(-gx, lam)[4:5]
)
)
)
print(resjacphi[(n+1):(n+m), 1:n] - checkC)
cat("\n\n________________________________________\n\n")
cat("\n\npart D\n\n")
checkD <- diag(GrBphiFB(-gx, lam))
print(resjacphi[(n+1):(n+m), (n+1):(n+m)] - checkD)