| GNE.ceq {GNE} | R Documentation |
Constrained equation reformulation of the GNE problem.
Description
Constrained equation reformulation via the extended KKT system of the GNE problem.
Usage
GNE.ceq(init, dimx, dimlam, grobj, arggrobj, heobj, argheobj,
constr, argconstr, grconstr, arggrconstr, heconstr, argheconstr,
dimmu, joint, argjoint, grjoint, arggrjoint, hejoint, arghejoint,
method="PR", control=list(), silent=TRUE, ...)
Arguments
init |
Initial values for the parameters to be optimized over: |
dimx |
a vector of dimension for |
dimlam |
a vector of dimension for |
grobj |
gradient of the objective function (to be minimized), see details. |
arggrobj |
a list of additional arguments of the objective gradient. |
heobj |
Hessian of the objective function, see details. |
argheobj |
a list of additional arguments of the objective Hessian. |
constr |
constraint function ( |
argconstr |
a list of additional arguments of the constraint function. |
grconstr |
gradient of the constraint function, see details. |
arggrconstr |
a list of additional arguments of the constraint gradient. |
heconstr |
Hessian of the constraint function, see details. |
argheconstr |
a list of additional arguments of the constraint Hessian. |
dimmu |
a vector of dimension for |
joint |
joint function ( |
argjoint |
a list of additional arguments of the joint function. |
grjoint |
gradient of the joint function, see details. |
arggrjoint |
a list of additional arguments of the joint gradient. |
hejoint |
Hessian of the joint function, see details. |
arghejoint |
a list of additional arguments of the joint Hessian. |
method |
a character string specifying the method
|
control |
a list with control parameters. |
... |
further arguments to be passed to the optimization routine.
NOT to the functions |
silent |
a logical to get some traces. Default to |
Details
GNE.ceq solves the GNE problem via a constrained equation reformulation of the KKT system.
This approach consists in solving the extended Karush-Kuhn-Tucker
(KKT) system denoted by H(z)=0, for z \in \Omega where eqnz is formed by the players strategy
x, the Lagrange multiplier \lambda and the slate variable w.
The root problem H(z)=0 is solved by an iterative scheme z_{n+1} = z_n + d_n,
where the direction d_n is computed in two different ways. Let J(x)=Jac H(x).
There are two possible methods either "PR" for potential reduction algorithm
or "AS" for affine scaled trust reduction algorithm.
- (a) potential reduction algorithm:
The direction solves the system
H(z_n) + J(z_n) d = sigma_n a^T H(z_n) / ||a||_2^2 a.- (b) bound-constrained trust region algorithm:
The direction solves the system
\min_p ||J(z_n)^T p + H(z_n)||^2, forpsuch that||p|| <= Delta_n||.
... are further arguments to be passed to the optimization routine,
that is global, xscalm, silent.
A globalization scheme can be choosed using the global argument.
Available schemes are
- (1) Line search:
if
globalis set to"qline"or"gline", a line search is used with the merit function being half of the L2 norm ofPhi, respectively with a quadratic or a geometric implementation.- (3) Trust-region:
if
globalis set to"pwldog", the Powell dogleg method is used.- (2) None:
if
globalis set to"none", no globalization is done.
The default value of global is "gline" when method="PR" and
"pwldog" when method="AS".
The xscalm is a scaling parameter to used, either "fixed" (default)
or "auto", for which scaling factors are calculated from the euclidean norms of the
columns of the jacobian matrix.
The silent argument is a logical to report or not the optimization process, default
to FALSE.
The control argument is a list that can supply any of the following components:
xtolThe relative steplength tolerance. When the relative steplength of all scaled x values is smaller than this value convergence is declared. The default value is
10^{-8}.ftolThe function value tolerance. Convergence is declared when the largest absolute function value is smaller than
ftol. The default value is10^{-8}.btolThe backtracking tolerance. The default value is
10^{-2}.maxitThe maximum number of major iterations. The default value is 100 if a global strategy has been specified.
traceNon-negative integer. A value of 1 will give a detailed report of the progress of the iteration, default 0.
sigma,delta,zetaParameters initialized to
1/2,1,length(init)/2, respectively, whenmethod="PR".forcingparForcing parameter set to 0.1, when
method="PR".theta,radiusmin,reducmin,radiusmax,radiusred,reducred,radiusexp,reducexp-
Parameters initialized to
0.99995,1,0.1,1e10,1/2,1/4,2,3/4, whenmethod="AS".
Value
GNE.ceq returns a list with components:
parThe best set of parameters found.
valueThe value of the merit function.
countsA two-element integer vector giving the number of calls to
HandjacHrespectively.iterThe outer iteration number.
code-
The values returned are
1Function criterion is near zero. Convergence of function values has been achieved.
2x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than
xtol.3No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.
4Iteration limit
maxitexceeded.5Jacobian is too ill-conditioned.
6Jacobian is singular.
100an error in the execution.
messagea string describing the termination code.
fveca vector with function values.
Author(s)
Christophe Dutang
References
J.E. Dennis and J.J. Moree (1977), Quasi-Newton methods, Motivation and Theory, SIAM review.
Monteiro, R. and Pang, J.-S. (1999), A Potential Reduction Newton Method for Constrained equations, SIAM Journal on Optimization 9(3), 729-754.
S. Bellavia, M. Macconi and B. Morini (2003), An affine scaling trust-region approach to bound-constrained nonlinear systems, Applied Numerical Mathematics 44, 257-280
A. Dreves, F. Facchinei, C. Kanzow and S. Sagratella (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization 21(3), 1082-1108.
See Also
See GNE.fpeq, GNE.minpb and GNE.nseq
for other approaches; funCER and
jacCER for template functions of H and Jac H.
Examples
#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
if(i == 1)
res <- c(2*(x[1]-1), 0)
if(i == 2)
res <- c(0, 2*(x[2]-1/2))
res[j]
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
2 * (i == j && j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
#true value is (3/4, 1/4, 1/2, 1/2)
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj,
constr=g, grconstr=grg, heconstr=heg, method="PR",
control=list(trace=0, maxit=10))
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj,
constr=g, grconstr=grg, heconstr=heg, method="AS", global="pwldog",
xscalm="auto", control=list(trace=0, maxit=100))
#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------
#constants
myarg <- list(d= 20, lambda= 4, rho= 1)
dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
res <- -arg$rho * x[i]
if(i == j)
res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
arg$rho * (i == j) + arg$rho * (j == k)
dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
0
#true value is (16/3, 16/3, 0, 0)
x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg,
argheobj=myarg, constr=g, grconstr=grg, heconstr=heg,
method="PR", control=list(trace=0, maxit=10))
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg,
argheobj=myarg, constr=g, grconstr=grg, heconstr=heg,
method="AS", global="pwldog", xscalm="auto", control=list(trace=0, maxit=100))