get.IDR {GMCM} | R Documentation |
Posterior class probabilities, local, and adjusted IDRs.
Description
Functions for computing posterior cluster probabilities (get.prob
)
in the general GMCM as well as local and
adjusted irreproducibility discovery rates (get.IDR
) in the
special GMCM.
Usage
get.IDR(x, par, threshold = 0.05, ...)
get.prob(x, theta, ...)
Arguments
x |
A |
par |
A vector of length 4 where |
threshold |
The threshold level of the IDR rate. |
... |
Arguments passed to |
theta |
A list of parameters for the full model as described in
|
Value
get.IDR
returns a list of length 5 with elements:
idr |
A vector of the local idr values. I.e. the posterior
probability that |
IDR |
A vector of the adjusted IDR values. |
l |
The number of reproducible features at the specified
|
threshold |
The IDR threshold at which features are deemed reproducible. |
Khat |
A vector signifying whether the corresponding feature is reproducible or not. |
get.prob
returns a matrix where entry (i,j)
is the
posterior probability that the observation x[i, ]
belongs to cluster
j
.
Note
From GMCM version 1.1 get.IDR
has been an internal function.
Use get.prop
or get.IDR
instead. The function can still be
accessed with GMCM:::get.idr
. get.idr
returns a vector where
the i
'th entry is the posterior probability that observation i
is irreproducible. It is a simple wrapper for get.prob
.
Author(s)
Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>
References
Li, Q., Brown, J. B. J. B., Huang, H., & Bickel, P. J. (2011). Measuring reproducibility of high-throughput experiments. The Annals of Applied Statistics, 5(3), 1752-1779. doi:10.1214/11-AOAS466
Tewari, A., Giering, M., & Raghunathan, A. (2011). Parametric Characterization of Multimodal Distributions with Non-gaussian Modes. IEEE 11th International Conference on Data Mining Workshops, 2011, 286-292. doi:10.1109/ICDMW.2011.135
Examples
set.seed(1123)
# True parameters
true.par <- c(0.9, 2, 0.7, 0.6)
# Simulation of data from the GMCM model
data <- SimulateGMCMData(n = 1000, par = true.par, d = 2)
# Initial parameters
init.par <- c(0.5, 1, 0.5, 0.9)
# Nelder-Mead optimization
nm.par <- fit.meta.GMCM(data$u, init.par = init.par, method = "NM")
# Get IDR values
res <- get.IDR(data$u, nm.par, threshold = 0.05)
# Plot results
plot(data$u, col = res$Khat, pch = c(3,16)[data$K])