meps {GJRM} | R Documentation |
MEPS data
Description
2008 MEPS data.
Usage
data(meps)
Format
meps
is a 18592 row data frame with the following columns
- bmi
body mass index.
- age
age in years.
- gender
equal to 1 if male.
- race
levels: 2 white, 3 black, 4 native American, 5 others.
- education
years of education.
- health
levels: 5 excellent, 6 very good, 7 good, 8 fair, 9 poor.
- limitation
equal to 1 if health limits physical activity.
- region
levels: 2 northeast, 3 mid-west, 4 south, 5 west.
- private
equal to 1 if individual has private health insurance.
- visits.hosp
equal to 1 if at least one visit to hospital outpatient departments.
- diabetes
equal to 1 if diabetic.
- hypertension
equal to 1 if hypertensive.
- hyperlipidemia
equal to 1 if hyperlipidemic.
- income
income (000's).
Source
The data have been obtained from http://www.meps.ahrq.gov/.
Examples
## Not run:
###################################################
###################################################
library("GJRM")
data("meps", package = "GJRM")
###################################################
# Bivariate brobit models with endogenous treatment
###################################################
treat.eq <- private ~ s(bmi) + s(income) + s(age) + s(education) +
as.factor(health) + as.factor(race) +
as.factor(limitation) + as.factor(region) +
gender + hypertension + hyperlipidemia + diabetes
out.eq <- visits.hosp ~ private + s(bmi) + s(income) + s(age) +
s(education) + as.factor(health) +
as.factor(race) + as.factor(limitation) +
as.factor(region) + gender + hypertension +
hyperlipidemia + diabetes
f.list <- list(treat.eq, out.eq)
mr <- c("probit", "probit")
bpN <- gjrm(f.list, data = meps, margins = mr, model = "B")
bpF <- gjrm(f.list, data = meps, margins = mr, copula = "F", model = "B")
bpC0 <- gjrm(f.list, data = meps, margins = mr, copula = "C0", model = "B")
bpC180 <- gjrm(f.list, data = meps, margins = mr, copula = "C180", model = "B")
bpJ0 <- gjrm(f.list, data = meps, margins = mr, copula = "J0", model = "B")
bpJ180 <- gjrm(f.list, data = meps, margins = mr, copula = "J180", model = "B")
bpG0 <- gjrm(f.list, data = meps, margins = mr, copula = "G0", model = "B")
bpG180 <- gjrm(f.list, data = meps, margins = mr, copula = "G180", model = "B")
conv.check(bpJ0)
AIC(bpN, bpF, bpC0, bpC180, bpJ0, bpJ180, bpG0, bpG180)
set.seed(1)
summary(bpJ0)
#dev.copy(postscript, "contplot.eps")
#dev.off()
par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
cex.axis = 1.6, cex.lab = 1.6)
plot(bpJ0, eq = 1, seWithMean = TRUE, scale = 0, shade = TRUE,
pages = 1, jit = TRUE)
#dev.copy(postscript, "spline1.eps")
#dev.off()
par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
cex.axis = 1.6, cex.lab = 1.6)
plot(bpJ0, eq = 2, seWithMean = TRUE, scale = 0, shade = TRUE,
pages = 1, jit = TRUE)
#dev.copy(postscript, "spline2.eps")
#dev.off()
set.seed(1)
AT(bpJ0, nm.end = "private", hd.plot = TRUE, cex.axis = 1.5,
cex.lab = 1.5, cex.main = 1.6)
#dev.copy(postscript, "hd.plotAT.eps")
#dev.off()
AT(bpJ0, nm.end = "private", type = "univariate")
AT(bpJ0, nm.end = "private", type = "naive")
## End(Not run)
#
[Package GJRM version 0.2-6.5 Index]