ghap.predictblup {GHap} | R Documentation |
Predict BLUP from reference
Description
Prediction of BLUP values in test individuals based on reference individuals.
Usage
ghap.predictblup(refblup, vcp, covmat,
errormat = NULL,
errorname = "",
include.ref = TRUE,
diagonals = FALSE,
tol = 1e-12)
Arguments
refblup |
A named numeric vector of reference BLUP values. |
vcp |
A numeric value for the variance in BLUP values. |
covmat |
A square matrix containing correlations among individuals. Both test and reference indiviudals must be present in the matrix. |
errormat |
A square error matrix for reference individuals. This matrix can be obtained with argument extras = "LHSi" in the |
errorname |
The name used for the random effect in the |
include.ref |
A logical value indicating if reference individuals should be included in the output (default = TRUE). |
diagonals |
A logical value indicating if diagonals of the covariance matrix should be used in calculations of accuracy and standard errors (default = FALSE). The default is to set diagonals to 1. For genomic estimated breeding values, using TRUE will account for inbreeding in the computation of accuracies and standard errors. |
tol |
A numeric value specifying the scalar to add to the diagonal of the covariance matrix if it is not inversible (default = 1e-12). |
Value
A data frame with predictions of BLUP values. If an error matrix is provided, standard errors and accuracies are also included.
Author(s)
Yuri Tani Utsunomiya <ytutsunomiya@gmail.com>
References
J.F. Taylor. Implementation and accuracy of genomic selection. Aquaculture 2014. 420, S8-S14.
Examples
# #### DO NOT RUN IF NOT NECESSARY ###
#
# # Copy plink data in the current working directory
# exfiles <- ghap.makefile(dataset = "example",
# format = "plink",
# verbose = TRUE)
# file.copy(from = exfiles, to = "./")
#
# # Copy metadata in the current working directory
# exfiles <- ghap.makefile(dataset = "example",
# format = "meta",
# verbose = TRUE)
# file.copy(from = exfiles, to = "./")
#
# # Load plink data
# plink <- ghap.loadplink("example")
#
# # Load phenotype and pedigree data
# df <- read.table(file = "example.phenotypes", header=T)
#
# ### RUN ###
#
# # Subset individuals from the pure1 population
# pure1 <- plink$id[which(plink$pop == "Pure1")]
# plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)
#
# # Subset markers with MAF > 0.05
# freq <- ghap.freq(plink)
# mkr <- names(freq)[which(freq > 0.05)]
# plink <- ghap.subset(object = plink, ids = pure1, variants = mkr)
#
# # Compute genomic relationship matrix
# # Induce sparsity to help with matrix inversion
# K <- ghap.kinship(plink, sparsity = 0.01)
#
# # Fit mixed model
# df$rep <- df$id
# model <- ghap.lmm(formula = pheno ~ 1 + (1|id) + (1|rep),
# data = df,
# covmat = list(id = K, rep = NULL),
# extras = "LHSi")
# refblup <- model$random$id$Estimate
# names(refblup) <- rownames(model$random$id)
#
# # Predict blup of reference and test individuals
# blup <- ghap.predictblup(refblup, vcp = model$vcp$Estimate[1],
# covmat = as.matrix(K),
# errormat = model$extras$LHSi,
# errorname = "id")
#
# # Compare predictions
# plot(blup$Estimate, model$random$id$Estimate)
# abline(0,1)