score_binary {GGMncv} | R Documentation |
Binary Classification
Description
Binary Classification
Usage
score_binary(estimate, true, model_name = NULL)
Arguments
estimate |
Matrix. Estimated graph (adjacency matrix) |
true |
Matrix. True graph (adjacency matrix) |
model_name |
Character string. Name of the method or penalty
(defaults to |
Value
A data frame containing specificity (1 - false positive rate), sensitivity (true positive rate), precision (1 - false discovery rate), f1_score, and mcc (Matthews correlation coefficient).
Examples
p <- 20
n <- 500
true_net <- gen_net(p = p, edge_prob = 0.25)
y <- MASS::mvrnorm(n = n,
mu = rep(0, p),
Sigma = true_net$cors)
# default
fit_atan <- ggmncv(R = cor(y),
n = nrow(y),
penalty = "atan",
progress = FALSE)
# lasso
fit_l1 <- ggmncv(R = cor(y),
n = nrow(y),
penalty = "lasso",
progress = FALSE)
# atan scores
score_binary(estimate = true_net$adj,
true = fit_atan$adj,
model_name = "atan")
score_binary(estimate = fit_l1$adj,
true = true_net$adj,
model_name = "lasso")
[Package GGMncv version 2.1.1 Index]