| extract {GDINA} | R Documentation |
extract elements from objects of various classes
Description
A generic function to extract elements from objects of class GDINA,
itemfit, modelcomp, Qval or simGDINA. This
page gives the elements that can be extracted from the class GDINA.
To see what can be extracted from itemfit, modelcomp, and
Qval, go to the corresponding function help page.
Objects which can be extracted from GDINA objects include:
- AIC
AIC
- att.prior
attribute prior weights for calculating marginalized likelihood in the last EM iteration
- attributepattern
all attribute patterns involved in the current calibration
- BIC
BIC
- CAIC
Consistent AIC
- catprob.cov
covariance matrix of item probability parameter estimates; Need to specify
SE.type- catprob.parm
item parameter estimates
- catprob.se
standard error of item probability parameter estimates; Need to specify
SE.type- convergence
TRUEif the calibration is converged.- dat
raw data
- del.ind
deleted observation number
- delta.cov
covariance matrix of delta parameter estimates; Need to specify
SE.type- delta.parm
delta parameter estimates
- delta.se
standard error of delta parameter estimates; Need to specify
SE.type- designmatrix
A list of design matrices for each item/category
- deviance
deviance, or negative two times observed marginal log likelihood
- discrim
GDINA discrimination index
- expectedCorrect
expected # of examinees in each latent group answering item correctly
- expectedTotal
expected # of examinees in each latent group
- higher.order
higher-order model specifications
- LCprob.parm
success probabilities for all latent classes
- logLik
observed marginal log likelihood
- linkfunc
link functions for each item
- initial.catprob
initial item category probability parameters
- natt
number of attributes
- ncat
number of categories
- ngroup
number of groups
- nitem
number of items
- nitr
number of EM iterations
- nobs
number of observations, or sample size
- nLC
number of latent classes
- prevalence
prevalence of each attribute
- posterior.prob
posterior weights for each latent class
- reduced.LG
Reduced latent group for each item
- SABIC
Sample size Adusted BIC
- sequential
is a sequential model fitted?
Usage
extract(object, what, ...)
Arguments
object |
objects from class |
what |
what to extract |
... |
additional arguments |
Examples
## Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
extract(fit,"discrim")
extract(fit,"designmatrix")
## End(Not run)