extract {GDINA} | R Documentation |
extract elements from objects of various classes
Description
A generic function to extract elements from objects of class GDINA
,
itemfit
, modelcomp
, Qval
or simGDINA
. This
page gives the elements that can be extracted from the class GDINA
.
To see what can be extracted from itemfit
, modelcomp
, and
Qval
, go to the corresponding function help page.
Objects which can be extracted from GDINA
objects include:
- AIC
AIC
- att.prior
attribute prior weights for calculating marginalized likelihood in the last EM iteration
- attributepattern
all attribute patterns involved in the current calibration
- BIC
BIC
- CAIC
Consistent AIC
- catprob.cov
covariance matrix of item probability parameter estimates; Need to specify
SE.type
- catprob.parm
item parameter estimates
- catprob.se
standard error of item probability parameter estimates; Need to specify
SE.type
- convergence
TRUE
if the calibration is converged.- dat
raw data
- del.ind
deleted observation number
- delta.cov
covariance matrix of delta parameter estimates; Need to specify
SE.type
- delta.parm
delta parameter estimates
- delta.se
standard error of delta parameter estimates; Need to specify
SE.type
- designmatrix
A list of design matrices for each item/category
- deviance
deviance, or negative two times observed marginal log likelihood
- discrim
GDINA discrimination index
- expectedCorrect
expected # of examinees in each latent group answering item correctly
- expectedTotal
expected # of examinees in each latent group
- higher.order
higher-order model specifications
- LCprob.parm
success probabilities for all latent classes
- logLik
observed marginal log likelihood
- linkfunc
link functions for each item
- initial.catprob
initial item category probability parameters
- natt
number of attributes
- ncat
number of categories
- ngroup
number of groups
- nitem
number of items
- nitr
number of EM iterations
- nobs
number of observations, or sample size
- nLC
number of latent classes
- prevalence
prevalence of each attribute
- posterior.prob
posterior weights for each latent class
- reduced.LG
Reduced latent group for each item
- SABIC
Sample size Adusted BIC
- sequential
is a sequential model fitted?
Usage
extract(object, what, ...)
Arguments
object |
objects from class |
what |
what to extract |
... |
additional arguments |
Examples
## Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
extract(fit,"discrim")
extract(fit,"designmatrix")
## End(Not run)