DTM {GDINA} | R Documentation |
Experimental function for diagnostic multiple-strategy CDMs
Description
This function estimates the diagnostic tree model (Ma, 2018) for polytomous responses with multiple strategies. It is an experimental function, and will be further optimized.
Usage
DTM(
dat,
Qc,
delta = NULL,
Tmatrix = NULL,
conv.crit = 0.001,
conv.type = "pr",
maxitr = 1000
)
Arguments
dat |
A required |
Qc |
A required |
delta |
initial item parameters |
Tmatrix |
The mapping matrix showing the relation between the OBSERVED responses (rows) and the PSEDUO items (columns); The first column gives the observed responses. |
conv.crit |
The convergence criterion for max absolute change in item parameters. |
conv.type |
convergence criteria; Can be |
maxitr |
The maximum iterations allowed. |
Author(s)
Wenchao Ma, The University of Alabama, wenchao.ma@ua.edu
References
Ma, W. (2018). A Diagnostic Tree Model for Polytomous Responses with Multiple Strategies. British Journal of Mathematical and Statistical Psychology.
See Also
GDINA
for MS-DINA model and single strategy CDMs,
and GMSCDM
for generalized multiple strategies CDMs for dichotomous response data
Examples
## Not run:
K=5
g=0.2
item.no <- rep(1:6,each=4)
# the first node has three response categories: 0, 1 and 2
node.no <- rep(c(1,1,2,3),6)
Q1 <- matrix(0,length(item.no),K)
Q2 <- cbind(7:(7+K-1),rep(1,K),diag(K))
for(j in 1:length(item.no)) {
Q1[j,sample(1:K,sample(3,1))] <- 1
}
Qc <- rbind(cbind(item.no,node.no,Q1),Q2)
Tmatrix.set <- list(cbind(c(0,1,2,3,3),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
cbind(c(0,1,2,3,4),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
cbind(c(0,1),c(0,1)))
Tmatrix <- Tmatrix.set[c(1,1,1,1,1,1,rep(3,K))]
sim <- simDTM(N=2000,Qc=Qc,gs.parm=matrix(0.2,nrow(Qc),2),Tmatrix=Tmatrix)
est <- DTM(dat=sim$dat,Qc=Qc,Tmatrix = Tmatrix)
## End(Not run)