GaussianBellFuzzyNumber {FuzzySTs} | R Documentation |
Creates a Gaussian two-sided bell fuzzy number
Description
Creates a Gaussian two-sided bell fuzzy number
Usage
GaussianBellFuzzyNumber(
left.mean,
left.sigma,
right.mean,
right.sigma,
alphacuts = FALSE,
margin = c(5, 5),
step = 0.01,
breakpoints = 100,
precision = 4,
plot = FALSE
)
Arguments
left.mean |
a numerical value of the parameter mu of the left Gaussian curve. |
left.sigma |
a numerical value of the parameter sigma of the left Gaussian curve. |
right.mean |
a numerical value of the parameter mu of the right Gaussian curve. |
right.sigma |
a numerical value of the parameter sigma of the right Gaussian curve. |
alphacuts |
fixed by default to "FALSE". No alpha-cuts are printed in this case. |
margin |
an optional numerical couple of values representing the range of calculations of the Gaussian curve written as [mean - 3*sigma; mean + 3*sigma] by default. |
step |
a numerical value fixing the step between two knots dividing the interval [mean - 3*sigma; mean + 3*sigma]. |
breakpoints |
a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default. |
precision |
an integer specifying the number of decimals for which the calculations are made. These latter are set by default to be at the order of 1/10^4 . |
plot |
fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is required. |
Value
If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors representing the left and right alpha-cuts. For this output, is.alphacuts = TRUE. If the parameter alphacuts="FALSE", the function returns a list composed by the Class, the mean, the sigma, the vectors of the left and right alpha-cuts.
Examples
GBFN <- GaussianBellFuzzyNumber(left.mean = -1, left.sigma = 1,
right.mean = 2, right.sigma = 1, alphacuts = TRUE, plot=TRUE)
is.alphacuts(GBFN)