plot.FDX {FDX} | R Documentation |
Plot Method for FDX
objects
Description
Plots raw p-values of a FDX
object and highlights rejected and
accepted p-values. If present, the critical values are plotted, too.
Usage
## S3 method for class 'FDX'
plot(
x,
col = c(2, 4, 1),
pch = c(1, 1, 1),
lwd = c(1, 1, 1),
type.crit = "b",
legend = NULL,
...
)
Arguments
x |
an object of class " |
col |
a numeric or character vector of length 3 indicating the colors of the
|
pch |
a numeric or character vector of length 3 indicating the point characters of the
|
lwd |
a numeric vector of length 3 indicating the thickness of the points and lines. |
type.crit |
1-character string giving the type of plot desired for the
critical values (e.g.: |
legend |
if NULL, no legend is plotted; otherwise expecting a character string like "topleft" etc. or a numeric vector of two elements indicating (x, y) coordinates. |
... |
further arguments to |
Details
If x
contains results of a weighted approach, the Y-axis of the plot
is derived from the weighted p-values. Otherwise, it is constituted by the
raw ones.
Examples
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Construction of the p-values and their supports (fisher.pvalues.support
# is from 'DiscreteFDR' package!)
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support
DLR.sd.fast <- DLR(raw.pvalues, pCDFlist)
DLR.sd.crit <- DLR(raw.pvalues, pCDFlist, critical.values = TRUE)
DLR.su.fast <- DLR(raw.pvalues, pCDFlist, direction = "su")
DLR.su.crit <- DLR(raw.pvalues, pCDFlist, direction = "su", critical.values = TRUE)
plot(DLR.su.fast)
plot(DLR.su.crit, xlim = c(1, 5), ylim = c(0, 0.4))
plot(DLR.sd.fast, col = c(2, 4), pch = c(2, 3), lwd = c(2, 2),
legend = "topleft", xlim = c(1, 5), ylim = c(0, 0.4))
plot(DLR.sd.crit, col = c(2, 4, 1), pch = c(1, 1, 4), lwd = c(1, 1, 2),
type.crit = 'o', legend = c(1, 0.4), lty = 1, xlim = c(1, 5),
ylim = c(0, 0.4))