fast.Discrete {FDX} | R Documentation |
Fast application of discrete procedures
Description
Applies the [DLR], [DGR] or [DPB] procedures, without computing the critical values, to a data set of 2 x 2 contingency tables using Fisher's exact test.
Usage
fast.Discrete.LR(
counts,
alternative = "greater",
input = "noassoc",
alpha = 0.05,
zeta = 0.5,
direction = "sd",
adaptive = TRUE
)
fast.Discrete.PB(
counts,
alternative = "greater",
input = "noassoc",
alpha = 0.05,
zeta = 0.5,
adaptive = TRUE,
exact = FALSE
)
fast.Discrete.GR(
counts,
alternative = "greater",
input = "noassoc",
alpha = 0.05,
zeta = 0.5,
adaptive = TRUE
)
Arguments
counts |
a data frame of 2 or 4 columns and any number of lines,
each line representing a 2 x 2 contingency table to
test. The number of columns and what they must contain
depend on the value of the |
alternative |
same argument as in |
input |
the format of the input data frame, see Details of
|
alpha |
the target FDP, a number strictly between 0 and 1. For |
zeta |
the target probability of not exceeding the desired FDP, a number strictly between 0 and 1. If |
direction |
a character string specifying whether to conduct a step-up ( |
adaptive |
a boolean specifying whether to conduct an adaptive procedure or not. |
exact |
a boolean specifying whether to compute the Poisson-Binomial distribution exactly or by a normal approximation. |
Value
A FDX
S3 class object whose elements are:
Rejected |
Rejected raw p-values. |
Indices |
Indices of rejected hypotheses. |
Num.rejected |
Number of rejections. |
Adjusted |
Adjusted p-values (only for step-down direction). |
Method |
A character string describing the used algorithm, e.g. 'Discrete Lehmann-Romano procedure (step-up)'. |
FDP.threshold |
FDP threshold |
Exceedance.probability |
Probability |
Adaptive |
A boolean specifying whether an adaptive procedure was conducted or not. |
Data$raw.pvalues |
The values of |
Data$data.name |
The respective variable names of |
Examples
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
DLR.sd <- fast.Discrete.LR(counts = df, input = "noassoc")
DLR.sd$Adjusted
summary(DLR.sd)
DLR.su <- fast.Discrete.LR(counts = df, input = "noassoc", direction = "su")
summary(DLR.su)
NDLR.sd <- fast.Discrete.LR(counts = df, input = "noassoc", adaptive = FALSE)
NDLR.sd$Adjusted
summary(NDLR.sd)
NDLR.su <- fast.Discrete.LR(counts = df, input = "noassoc", direction = "su", adaptive = FALSE)
summary(NDLR.su)
DGR <- fast.Discrete.GR(counts = df, input = "noassoc")
DGR$Adjusted
summary(DGR)
NDGR <- fast.Discrete.GR(counts = df, input = "noassoc", adaptive = FALSE)
NDGR$Adjusted
summary(NDGR)
DPB <- fast.Discrete.PB(counts = df, input = "noassoc")
DPB$Adjusted
summary(DPB)
NDPB <- fast.Discrete.PB(counts = df, input = "noassoc", adaptive = FALSE)
NDPB$Adjusted
summary(NDPB)