discrete.LR {FDX} | R Documentation |
Discrete Lehmann-Romano procedure
Description
Apply the [DLR] procedure, with or without computing the critical values, to a set of p-values and their discrete support. Both step-down and step-up procedures can be computed and non-adaptive versions are available as well.
Usage
discrete.LR(
raw.pvalues,
pCDFlist,
alpha = 0.05,
zeta = 0.5,
direction = "sd",
adaptive = TRUE,
critical.values = FALSE
)
DLR(
raw.pvalues,
pCDFlist,
alpha = 0.05,
zeta = 0.5,
direction = "sd",
critical.values = FALSE
)
NDLR(
raw.pvalues,
pCDFlist,
alpha = 0.05,
zeta = 0.5,
direction = "sd",
critical.values = FALSE
)
Arguments
raw.pvalues |
vector of the raw observed p-values, as provided by the end user and before matching with their nearest neighbor in the CDFs supports. |
pCDFlist |
a list of the supports of the CDFs of the p-values. Each support is represented by a vector that must be in increasing order. |
alpha |
the target FDP, a number strictly between 0 and 1. For |
zeta |
the target probability of not exceeding the desired FDP, a number strictly between 0 and 1. If |
direction |
a character string specifying whether to conduct a step-up ( |
adaptive |
a boolean specifying whether to conduct an adaptive procedure or not. |
critical.values |
a boolean. If |
Details
DLR
and NDLR
are wrapper functions for discrete.LR
.
The first one simply passes all its parameters to discrete.LR
with
adaptive = TRUE
and NDLR
does the same with
adaptive = FALSE
.
Value
A FDX
S3 class object whose elements are:
Rejected |
Rejected raw p-values. |
Indices |
Indices of rejected hypotheses. |
Num.rejected |
Number of rejections. |
Adjusted |
Adjusted p-values (only for step-down direction). |
Critical.values |
Critical values (if requested). |
Method |
A character string describing the used algorithm, e.g. 'Discrete Lehmann-Romano procedure (step-up)'. |
FDP.threshold |
FDP threshold |
Exceedance.probability |
Probability |
Data$raw.pvalues |
The values of |
Data$pCDFlist |
The values of |
Data$data.name |
The respective variable names of |
References
S. Döhler and E. Roquain (2019). Controlling False Discovery Exceedance for Heterogeneous Tests. arXiv:1912.04607v1.
See Also
kernel
, FDX-package
, continuous.LR
,
continuous.GR
, discrete.GR
,
discrete.PB
, weighted.LR
,
weighted.GR
, weighted.PB
Examples
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Construction of the p-values and their supports (fisher.pvalues.support
# is from 'DiscreteFDR' package!)
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support
DLR.sd.fast <- DLR(raw.pvalues, pCDFlist)
summary(DLR.sd.fast)
DLR.su.fast <- DLR(raw.pvalues, pCDFlist, direction = "su")
summary(DLR.su.fast)
DLR.sd.crit <- DLR(raw.pvalues, pCDFlist, critical.values = TRUE)
summary(DLR.sd.crit)
DLR.su.crit <- DLR(raw.pvalues, pCDFlist, direction = "su", critical.values = TRUE)
summary(DLR.su.crit)
NDLR.sd.fast <- NDLR(raw.pvalues, pCDFlist)
summary(NDLR.sd.fast)
NDLR.su.fast <- NDLR(raw.pvalues, pCDFlist, direction = "su")
summary(NDLR.su.fast)
NDLR.sd.crit <- NDLR(raw.pvalues, pCDFlist, critical.values = TRUE)
summary(NDLR.sd.crit)
NDLR.su.crit <- NDLR(raw.pvalues, pCDFlist, direction = "su", critical.values = TRUE)
summary(NDLR.su.crit)