fdr.avepow {FDRsamplesize2} | R Documentation |
Compute FDR and average power for a given sample size and effect size vector
Description
For a given fixed sample size and effect size vector,compute FDR and average power as a function of the p-value threshold alpha.
Usage
fdr.avepow(n, avepow.func, null.hypo, alpha = 1:100/1000, method = "BH", ...)
Arguments
n |
sample size |
avepow.func |
function to compute average power |
null.hypo |
string to evaluate null hypothesis |
alpha |
p-value threshold(s) to consider |
method |
method to estimate proportion pi0 of tests with a true null hypothesis, including: "HH" (p-value histogram height) , "HM" (p-value histogram mean), "BH" (Benjamini & Hochberg 1995), "Jung" (Jung 2005) |
... |
additional arguments, including effect size vector for average power function |
Value
A list with the following components:
n |
input sample size |
avepow.func |
average power function |
null.hypo |
null hypothesis string |
pi0 |
computed value of pi0 |
method |
method to estimate proportion |
other.args |
additional arguments |
res.tbl |
table of alpha, fdr, and average power |
References
Pounds S and Cheng C, "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.
Gadbury GL, et al. (2004) Power and sample size estimation in high dimensional biology. Statistical Methods in Medical Research 13(4):325-38.
Jung,Sin-Ho."Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.
Ni Y, Seffernick A, Onar-Thomas A, Pounds S. "Computing Power and Sample Size for the False Discovery Rate in Multiple Applications", Manuscript.
Examples
n = 50; # number of events
logHR = rep(c(0,0.5),c(950,50));
v = rep(1,length(logHR)); # variance of predictor variable (vector)
res = fdr.avepow(n,average.power.coxph,"logHR==0",logHR=logHR,v=v);
res$pi0;
head(res$res.tbl)