alpha.power.fdr {FDRsamplesize2} | R Documentation |
Compute p-value threshold for given the proportion pi0 of tests with a true null
Description
Given the proportion pi0 of tests with a true null, find the p-value threshold that results in a desired FDR and average power.
Usage
alpha.power.fdr(fdr, pwr, pi0, method = "HH")
Arguments
fdr |
desired FDR (scalar numeric) |
pwr |
desired average power (scalar numeric) |
pi0 |
the proportion of tests with a true null hypothesis |
method |
method to estimate proportion |
Details
To get the fixed p-value threshold for multiple testing procedure, 4 approximation methods are provided, they are Benjamini & Hochberg procedure (1995), Jung's formula (2005), method of using p-value histogram height (HH) and method of using p-value histogram mean (HM). For last two methods' details, see Ni Y, Onar-Thomas A, Pounds S. "Computing Power and Sample Size for the False Discovery Rate in Multiple Applications"
Value
The fixed p-value threshold for multiple testing procedure
References
Pounds S and Cheng C, "Sample size determination for the false discovery rate." Bioinformatics 21.23 (2005): 4263-4271.
Gadbury GL, et al. (2004) Power and sample size estimation in high dimensional biology. Statistical Methods in Medical Research 13(4):325-38.
Jung,Sin-Ho."Sample size for FDR-control in microarray data analysis." Bioinformatics 21.14 (2005): 3097-3104.
Ni Y, Seffernick A, Onar-Thomas A, Pounds S. "Computing Power and Sample Size for the False Discovery Rate in Multiple Applications", Manuscript.
Examples
alpha.power.fdr(fdr = 0.1, pwr = 0.9, pi0=0.9, method = "HH")