pdfdist.evaluate.core {EvaluateCore} | R Documentation |
Distance Between Probability Distributions
Description
Compute Kullback-Leibler (Kullback and Leibler 1951), Kolmogorov-Smirnov (Kolmogorov 1933; Smirnov 1948) and Anderson-Darling distances (Anderson and Darling 1952) between the probability distributions of collection (EC) and core set (CS) for quantitative traits.
Usage
pdfdist.evaluate.core(data, names, quantitative, selected)
Arguments
data |
The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data. |
names |
Name of column with the individual names as a character string |
quantitative |
Name of columns with the quantitative traits as a character vector. |
selected |
Character vector with the names of individuals selected in
core collection and present in the |
Value
A data frame with the following columns.
Trait |
The quantitative trait. |
KL_Distance |
The Kullback-Leibler distance (Kullback and Leibler 1951) between EC and CS. |
KS_Distance |
The Kolmogorov-Smirnov distance (Kolmogorov 1933; Smirnov 1948) between EC and CS. |
KS_pvalue |
The p value of the Kolmogorov-Smirnov distance. |
AD_Distance |
Anderson-Darling distance (Anderson and Darling 1952) between EC and CS. |
AD_pvalue |
The p value of the Anderson-Darling distance. |
KS_significance |
The significance of the Kolmogorov-Smirnov distance (*: p \(\leq\) 0.01; **: p \(\leq\) 0.05; ns: p \(>\) 0.05). |
AD_pvalue |
The significance of the Anderson-Darling distance (*: p \(\leq\) 0.01; **: p \(\leq\) 0.05; ns: p \(>\) 0.05). |
See Also
Examples
data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
pdfdist.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core)