iqr.evaluate.core {EvaluateCore} | R Documentation |
Interquartile Range
Description
Compute the Interquartile Range (IQR) (Upton and Cook 1996) to compare quantitative traits of the entire collection (EC) and core set (CS).
Usage
iqr.evaluate.core(data, names, quantitative, selected)
Arguments
data |
The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data. |
names |
Name of column with the individual names as a character string |
quantitative |
Name of columns with the quantitative traits as a character vector. |
selected |
Character vector with the names of individuals selected in
core collection and present in the |
Value
A data frame with the IQR values of the EC and CS for the traits
specified as quantitative
.
References
Upton G, Cook I (1996). “General summary statistics.” In Understanding statistics. Oxford University Press.
See Also
Examples
data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
iqr.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core)
[Package EvaluateCore version 0.1.3 Index]