cr.evaluate.core {EvaluateCore} | R Documentation |
Coincidence Rate of Range
Description
Compute the Coincidence Rate of Range (\(CR\)) (Hu et al. 2000) (originally described by (Diwan et al. 1995) as Mean range ratio) to compare quantitative traits of the entire collection (EC) and core set (CS).
Usage
cr.evaluate.core(data, names, quantitative, selected)
Arguments
data |
The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data. |
names |
Name of column with the individual names as a character string |
quantitative |
Name of columns with the quantitative traits as a character vector. |
selected |
Character vector with the names of individuals selected in
core collection and present in the |
Details
The Coincidence Rate of Range (\(CR\)) is computed as follows.
\[CR = \left ( \frac{1}{n} \sum_{i=1}^{n} \frac{R_{CS_{i}}}{R_{EC_{i}}} \right ) \times 100\]Where, \(R_{CS_{i}}\) is the range of the \(i\)th trait in the CS, \(R_{EC_{i}}\) is the range of the \(i\)th trait in the EC and \(n\) is the total number of traits.
A representative CS should have a \(CR\) value no less than 70% (Diwan et al. 1995) or 80% (Hu et al. 2000).
Value
The \(CR\) value.
References
Diwan N, McIntosh MS, Bauchan GR (1995).
“Methods of developing a core collection of annual Medicago species.”
Theoretical and Applied Genetics, 90(6), 755–761.
Hu J, Zhu J, Xu HM (2000).
“Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops.”
Theoretical and Applied Genetics, 101(1), 264–268.
See Also
Examples
data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
cr.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core)