ccwc {Epi} | R Documentation |
Generate a nested case-control study
Description
Given the basic outcome variables for a cohort study: the time of entry to the cohort, the time of exit and the reason for exit ("failure" or "censoring"), this function computes risk sets and generates a matched case-control study in which each case is compared with a set of controls randomly sampled from the appropriate risk set. Other variables may be matched when selecting controls.
Usage
ccwc( entry=0, exit, fail, origin=0, controls=1, match=list(),
include=list(), data=NULL, silent=FALSE )
Arguments
entry |
Time of entry to follow-up |
exit |
Time of exit from follow-up |
fail |
Status on exit (1=Fail, 0=Censored) |
origin |
Origin of analysis time scale |
controls |
The number of controls to be selected for each case |
match |
List of categorical variables on which to match cases and controls |
include |
List of other variables to be carried across into the case-control study |
data |
Data frame in which to look for input variables |
silent |
If FALSE, echos a . to the screen for each case-control set created; otherwise produces no output. |
Value
The case-control study, as a dataframe containing:
Set |
case-control set number |
Map |
row number of record in input dataframe |
Time |
failure time of the case in this set |
Fail |
failure status (1=case, 0=control) |
These are followed by the matching variables, and finally by the
variables in the include
list
Author(s)
David Clayton
References
Clayton and Hills, Statistical Models in Epidemiology, Oxford University Press, Oxford:1993.
See Also
Examples
#
# For the diet and heart dataset, create a nested case-control study
# using the age scale and matching on job
#
data(diet)
dietcc <- ccwc( doe, dox, chd, origin=dob, controls=2, data=diet,
include=energy, match=job)