| plotTTestDesign {EnvStats} | R Documentation |
Plots for a Sampling Design Based on a One- or Two-Sample t-Test
Description
Create plots involving sample size, power, scaled difference, and significance level for a one- or two-sample t-test.
Usage
plotTTestDesign(x.var = "n", y.var = "power", range.x.var = NULL,
n.or.n1 = 25, n2 = n.or.n1,
delta.over.sigma = switch(alternative, greater = 0.5, less = -0.5,
two.sided = ifelse(two.sided.direction == "greater", 0.5, -0.5)),
alpha = 0.05, power = 0.95,
sample.type = ifelse(!missing(n2), "two.sample", "one.sample"),
alternative = "two.sided", two.sided.direction = "greater", approx = FALSE,
round.up = FALSE, n.max = 5000, tol = 1e-07, maxiter = 1000, plot.it = TRUE,
add = FALSE, n.points = 50, plot.col = "black", plot.lwd = 3 * par("cex"),
plot.lty = 1, digits = .Options$digits, ..., main = NULL, xlab = NULL,
ylab = NULL, type = "l")
Arguments
x.var |
character string indicating what variable to use for the x-axis.
Possible values are |
y.var |
character string indicating what variable to use for the y-axis.
Possible values are |
range.x.var |
numeric vector of length 2 indicating the range of the x-variable to use
for the plot. The default value depends on the value of |
n.or.n1 |
numeric scalar indicating the sample size. The default value is
|
n2 |
numeric scalar indicating the sample size for group 2. The default value
is the value of |
delta.over.sigma |
numeric scalar specifying the ratio of the true difference ( |
alpha |
numeric scalar between 0 and 1 indicating the Type I error level associated
with the hypothesis test. The default value is |
power |
numeric scalar between 0 and 1 indicating the power associated with the
hypothesis test. The default value is |
sample.type |
character string indicating whether the design is based on a one-sample or
two-sample t-test. When |
alternative |
character string indicating the kind of alternative hypothesis. The possible
values are |
two.sided.direction |
character string indicating the direction (positive or negative) for the scaled
minimal detectable difference when |
approx |
logical scalar indicating whether to compute the power based on an approximation
to the non-central t-distribution. The default value is |
round.up |
logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is |
n.max |
for the case when |
tol |
numeric scalar relevant to the case when |
maxiter |
numeric scalar relevant to the case when |
plot.it |
a logical scalar indicating whether to create a new plot or add to the existing plot
(see |
add |
a logical scalar indicating whether to add the design plot to the
existing plot ( |
n.points |
a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are |
plot.col |
a numeric scalar or character string determining the color of the plotted
line or points. The default value is |
plot.lwd |
a numeric scalar determining the width of the plotted line. The default value is
|
plot.lty |
a numeric scalar determining the line type of the plotted line. The default value is
|
digits |
a scalar indicating how many significant digits to print out on the plot. The default
value is the current setting of |
main, xlab, ylab, type, ... |
additional graphical parameters (see |
Details
See the help files for tTestPower, tTestN, and
tTestScaledMdd for information on how to compute the power,
sample size, or scaled minimal detectable difference for a one- or two-sample
t-test.
Value
plotTTestDesign invisibly returns a list with components
x.var and y.var, giving coordinates of the points that have
been or would have been plotted.
Note
See the help files for tTestPower, tTestN, and
tTestScaledMdd.
Author(s)
Steven P. Millard (EnvStats@ProbStatInfo.com)
References
See the help files for tTestPower, tTestN, and
tTestScaledMdd.
See Also
tTestPower, tTestN,
tTestScaledMdd, t.test.
Examples
# Look at the relationship between power and sample size for a two-sample t-test,
# assuming a scaled difference of 0.5 and a 5% significance level:
dev.new()
plotTTestDesign(sample.type = "two")
#----------
# For a two-sample t-test, plot sample size vs. the scaled minimal detectable
# difference for various levels of power, using a 5% significance level:
dev.new()
plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
ylim = c(0, 110), main="")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
power = 0.9, add = TRUE, plot.col = "red")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "n", sample.type = "two",
power = 0.8, add = TRUE, plot.col = "blue")
legend("topright", c("95%", "90%", "80%"), lty = 1,
lwd = 3 * par("cex"), col = c("black", "red", "blue"), bty = "n")
title(main = paste("Sample Size vs. Scaled Difference for",
"Two-Sample t-Test, with Alpha=0.05 and Various Powers",
sep="\n"))
#==========
# Modifying the example on pages 21-4 to 21-5 of USEPA (2009), look at
# power versus scaled minimal detectable difference for various sample
# sizes in the context of the problem of using a one-sample t-test to
# compare the mean for the well with the MCL of 7 ppb. Use alpha = 0.01,
# assume an upper one-sided alternative (i.e., compliance well mean larger
# than 7 ppb).
dev.new()
plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 8, alpha = 0.01,
alternative = "greater", ylim = c(0, 1), main = "")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 6, alpha = 0.01,
alternative = "greater", add = TRUE, plot.col = "red")
plotTTestDesign(x.var = "delta.over.sigma", y.var = "power",
range.x.var = c(0.5, 2), n.or.n1 = 4, alpha = 0.01,
alternative = "greater", add = TRUE, plot.col = "blue")
legend("topleft", paste("N =", c(8, 6, 4)), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")
title(main = paste("Power vs. Scaled Difference for One-Sample t-Test",
"with Alpha=0.01 and Various Sample Sizes", sep="\n"))
#==========
# Clean up
#---------
graphics.off()