plotPredIntNparDesign {EnvStats} | R Documentation |
Plots for a Sampling Design Based on a Nonparametric Prediction Interval
Description
Create plots involving sample size (n
), number of future observations
(m
), minimum number of future observations the interval should contain
(k
), and confidence level (1-\alpha
) for a nonparametric prediction
interval.
Usage
plotPredIntNparDesign(x.var = "n", y.var = "conf.level", range.x.var = NULL,
n = max(25, lpl.rank + n.plus.one.minus.upl.rank + 1),
k = 1, m = ifelse(x.var == "k", ceiling(max.x), 1), conf.level = 0.95,
pi.type = "two.sided", lpl.rank = ifelse(pi.type == "upper", 0, 1),
n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1), n.max = 5000,
maxiter = 1000, plot.it = TRUE, add = FALSE, n.points = 100,
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, cex.main = par("cex"), ..., main = NULL,
xlab = NULL, ylab = NULL, type = "l")
Arguments
x.var |
character string indicating what variable to use for the x-axis.
Possible values are |
y.var |
character string indicating what variable to use for the y-axis.
Possible values are |
range.x.var |
numeric vector of length 2 indicating the range of the x-variable to use
for the plot. The default value depends on the value of |
n |
numeric scalar indicating the sample size. The default value is |
k |
positive integer specifying the minimum number of future observations out of |
m |
positive integer specifying the number of future observations. The default value is
|
conf.level |
numeric scalar between 0 and 1 indicating the confidence level
associated with the prediction interval. The default value is
|
pi.type |
character string indicating what kind of prediction interval to compute.
The possible values are |
lpl.rank |
non-negative integer indicating the rank of the order statistic to use for
the lower bound of the prediction interval. If |
n.plus.one.minus.upl.rank |
non-negative integer related to the rank of the order statistic to use for
the upper bound of the prediction interval. A value of
|
n.max |
for the case when |
maxiter |
positive integer indicating the maximum number of iterations to use in the
|
plot.it |
a logical scalar indicating whether to create a plot or add to the
existing plot (see |
add |
a logical scalar indicating whether to add the design plot to the
existing plot ( |
n.points |
a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are |
plot.col |
a numeric scalar or character string determining the color of the plotted
line or points. The default value is |
plot.lwd |
a numeric scalar determining the width of the plotted line. The default value is
|
plot.lty |
a numeric scalar determining the line type of the plotted line. The default value is
|
digits |
a scalar indicating how many significant digits to print out on the plot. The default
value is the current setting of |
cex.main , main , xlab , ylab , type , ... |
additional graphical parameters (see |
Details
See the help file for predIntNpar
, predIntNparConfLevel
,
and predIntNparN
for information on how to compute a
nonparametric prediction interval, how the confidence level
is computed when other quantities are fixed, and how the sample size is
computed when other quantities are fixed.
Value
plotPredIntNparDesign
invisibly returns a list with components
x.var
and y.var
, giving coordinates of the points that
have been or would have been plotted.
Note
See the help file for predIntNpar
.
Author(s)
Steven P. Millard (EnvStats@ProbStatInfo.com)
References
See the help file for predIntNpar
.
See Also
predIntNpar
, predIntNparConfLevel
,
predIntNparN
.
Examples
# Look at the relationship between confidence level and sample size for a
# two-sided nonparametric prediction interval for the next m=1 future observation.
dev.new()
plotPredIntNparDesign()
#==========
# Plot confidence level vs. sample size for various values of number of
# future observations (m):
dev.new()
plotPredIntNparDesign(k = 1, m = 1, ylim = c(0, 1), main = "")
plotPredIntNparDesign(k = 2, m = 2, add = TRUE, plot.col = "red")
plotPredIntNparDesign(k = 3, m = 3, add = TRUE, plot.col = "blue")
legend("bottomright", c("m=1", "m=2", "m=3"), lty = 1, lwd = 3 * par("cex"),
col = c("black", "red", "blue"), bty = "n")
title(main = paste("Confidence Level vs. Sample Size for Nonparametric PI",
"with Various Values of m", sep="\n"))
#==========
# Example 18-3 of USEPA (2009, p.18-19) shows how to construct
# a one-sided upper nonparametric prediction interval for the next
# 4 future observations of trichloroethylene (TCE) at a downgradient well.
# The data for this example are stored in EPA.09.Ex.18.3.TCE.df.
# There are 6 monthly observations of TCE (ppb) at 3 background wells,
# and 4 monthly observations of TCE at a compliance well.
#
# Modify this example by creating a plot to look at confidence level versus
# sample size (i.e., number of observations at the background wells) for
# predicting the next m = 4 future observations when constructing a one-sided
# upper prediction interval based on the maximum value.
dev.new()
plotPredIntNparDesign(k = 4, m = 4, pi.type = "upper")
#==========
# Clean up
#---------
graphics.off()