| plotLinearTrendTestDesign {EnvStats} | R Documentation |
Plots for a Sampling Design Based on a t-Test for Linear Trend
Description
Create plots involving sample size, power, scaled difference, and significance level for a t-test for linear trend.
Usage
plotLinearTrendTestDesign(x.var = "n", y.var = "power",
range.x.var = NULL, n = 12,
slope.over.sigma = switch(alternative, greater = 0.1, less = -0.1,
two.sided = ifelse(two.sided.direction == "greater", 0.1, -0.1)),
alpha = 0.05, power = 0.95, alternative = "two.sided",
two.sided.direction = "greater", approx = FALSE, round.up = FALSE,
n.max = 5000, tol = 1e-07, maxiter = 1000, plot.it = TRUE, add = FALSE,
n.points = ifelse(x.var == "n", diff(range.x.var) + 1, 50),
plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1,
digits = .Options$digits, ..., main = NULL, xlab = NULL, ylab = NULL,
type = "l")
Arguments
x.var |
character string indicating what variable to use for the x-axis.
Possible values are |
y.var |
character string indicating what variable to use for the y-axis.
Possible values are |
range.x.var |
numeric vector of length 2 indicating the range of the x-variable to use
for the plot. The default value depends on the value of |
n |
numeric scalar indicating the sample size. The default value is
|
slope.over.sigma |
numeric scalar specifying the ratio of the true slope ( |
alpha |
numeric scalar between 0 and 1 indicating the Type I error level associated
with the hypothesis test. The default value is |
power |
numeric scalar between 0 and 1 indicating the power associated with the
hypothesis test. The default value is |
alternative |
character string indicating the kind of alternative hypothesis. The possible values
are |
two.sided.direction |
character string indicating the direction (positive or negative) for the
scaled minimal detectable slope when |
approx |
logical scalar indicating whether to compute the power based on an approximation to
the non-central t-distribution. The default value is |
round.up |
logical scalar indicating whether to round up the values of the computed
sample size(s) to the next smallest integer. The default value is
|
n.max |
for the case when |
tol |
numeric scalar indicating the toloerance to use in the
|
maxiter |
positive integer indicating the maximum number of iterations
argument to pass to the |
plot.it |
a logical scalar indicating whether to create a new plot or add to the existing plot
(see |
add |
a logical scalar indicating whether to add the design plot to the
existing plot ( |
n.points |
a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are |
plot.col |
a numeric scalar or character string determining the color of the plotted
line or points. The default value is |
plot.lwd |
a numeric scalar determining the width of the plotted line. The default value is
|
plot.lty |
a numeric scalar determining the line type of the plotted line. The default value is
|
digits |
a scalar indicating how many significant digits to print out on the plot. The default
value is the current setting of |
main, xlab, ylab, type, ... |
additional graphical parameters (see |
Details
See the help files for linearTrendTestPower,
linearTrendTestN, and linearTrendTestScaledMds for
information on how to compute the power, sample size, or scaled minimal detectable
slope for a t-test for linear trend.
Value
plotlinearTrendTestDesign invisibly returns a list with components
x.var and y.var, giving coordinates of the points that have
been or would have been plotted.
Note
See the help files for linearTrendTestPower.
Author(s)
Steven P. Millard (EnvStats@ProbStatInfo.com)
References
See the help file for linearTrendTestPower.
See Also
linearTrendTestPower, linearTrendTestN,
linearTrendTestScaledMds.
Examples
# Look at the relationship between power and sample size for the t-test for
# liner trend, assuming a scaled slope of 0.1 and a 5% significance level:
dev.new()
plotLinearTrendTestDesign()
#==========
# Plot sample size vs. the scaled minimal detectable slope for various
# levels of power, using a 5% significance level:
dev.new()
plotLinearTrendTestDesign(x.var = "slope.over.sigma", y.var = "n",
ylim = c(0, 30), main = "")
plotLinearTrendTestDesign(x.var = "slope.over.sigma", y.var = "n",
power = 0.9, add = TRUE, plot.col = "red")
plotLinearTrendTestDesign(x.var = "slope.over.sigma", y.var = "n",
power = 0.8, add = TRUE, plot.col = "blue")
legend("topright", c("95%", "90%", "80%"), lty = 1, bty = "n",
lwd = 3 * par("cex"), col = c("black", "red", "blue"))
title(main = paste("Sample Size vs. Scaled Slope for t-Test for Linear Trend",
"with Alpha=0.05 and Various Powers", sep="\n"))
#==========
# Clean up
#---------
graphics.off()