| plotCiNparDesign {EnvStats} | R Documentation |
Plots for Sampling Design Based on Nonparametric Confidence Interval for a Quantile
Description
Create plots involving sample size, quantile, and confidence level for a nonparametric confidence interval for a quantile.
Usage
plotCiNparDesign(x.var = "n", y.var = "conf.level", range.x.var = NULL,
n = 25, p = 0.5, conf.level = 0.95, ci.type = "two.sided",
lcl.rank = ifelse(ci.type == "upper", 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower", 0, 1),
plot.it = TRUE, add = FALSE, n.points = 100, plot.col = "black",
plot.lwd = 3 * par("cex"), plot.lty = 1, digits = .Options$digits,
cex.main = par("cex"), ..., main = NULL, xlab = NULL, ylab = NULL,
type = "l")
Arguments
x.var |
character string indicating what variable to use for the x-axis.
Possible values are |
y.var |
character string indicating what variable to use for the y-axis.
Possible values are |
range.x.var |
numeric vector of length 2 indicating the range of the x-variable to use
for the plot. The default value depends on the value of |
n |
numeric scalar indicating the sample size. The default value is
|
p |
numeric scalar specifying the quantile. The value of this argument must be
between 0 and 1. The default value is |
conf.level |
a scalar between 0 and 1 indicating the confidence level associated with the confidence interval.
The default value is |
ci.type |
character string indicating what kind of confidence interval to compute. The
possible values are |
lcl.rank, n.plus.one.minus.ucl.rank |
numeric vectors of non-negative integers indicating the ranks of the
order statistics that are used for the lower and upper bounds of the
confidence interval for the specified quantile(s). When |
plot.it |
a logical scalar indicating whether to create a plot or add to the
existing plot (see |
add |
a logical scalar indicating whether to add the design plot to the
existing plot ( |
n.points |
a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are |
plot.col |
a numeric scalar or character string determining the color of the plotted
line or points. The default value is |
plot.lwd |
a numeric scalar determining the width of the plotted line. The default value is
|
plot.lty |
a numeric scalar determining the line type of the plotted line. The default value is
|
digits |
a scalar indicating how many significant digits to print out on the plot. The default
value is the current setting of |
cex.main, main, xlab, ylab, type, ... |
additional graphical parameters (see |
Details
See the help files for eqnpar, ciNparConfLevel,
and ciNparN for information on how to compute a
nonparametric confidence interval for a quantile, how the confidence level
is computed when other quantities are fixed, and how the sample size is
computed when other quantities are fixed.
Value
plotCiNparDesign invisibly returns a list with components
x.var and y.var, giving coordinates of the points that
have been or would have been plotted.
Note
See the help file for eqnpar.
Author(s)
Steven P. Millard (EnvStats@ProbStatInfo.com)
References
See the help file for eqnpar.
See Also
eqnpar, ciNparConfLevel,
ciNparN.
Examples
# Look at the relationship between confidence level and sample size for
# a two-sided nonparametric confidence interval for the 90'th percentile.
dev.new()
plotCiNparDesign(p = 0.9)
#----------
# Plot sample size vs. quantile for various levels of confidence:
dev.new()
plotCiNparDesign(x.var = "p", y.var = "n", range.x.var = c(0.8, 0.95),
ylim = c(0, 60), main = "")
plotCiNparDesign(x.var = "p", y.var = "n", conf.level = 0.9, add = TRUE,
plot.col = 2, plot.lty = 2)
plotCiNparDesign(x.var = "p", y.var = "n", conf.level = 0.8, add = TRUE,
plot.col = 3, plot.lty = 3)
legend("topleft", c("95%", "90%", "80%"), lty = 1:3, col = 1:3,
lwd = 3 * par('cex'), bty = 'n')
title(main = paste("Sample Size vs. Quantile for ",
"Nonparametric CI for \nQuantile, with ",
"Various Confidence Levels", sep=""))
#==========
# Clean up
#---------
graphics.off()