| cdfPlot {EnvStats} | R Documentation | 
Plot Cumulative Distribution Function
Description
Produce a cumulative distribution function (cdf) plot for a user-specified distribution.
Usage
  cdfPlot(distribution = "norm", param.list = list(mean = 0, sd = 1), 
    left.tail.cutoff = ifelse(is.finite(supp.min), 0, 0.001), 
    right.tail.cutoff = ifelse(is.finite(supp.max), 0, 0.001), plot.it = TRUE, 
    add = FALSE, n.points = 1000, cdf.col = "black", cdf.lwd = 3 * par("cex"), 
    cdf.lty = 1, curve.fill = FALSE, curve.fill.col = "cyan", 
    digits = .Options$digits, ..., type = ifelse(discrete, "s", "l"), 
    main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)
Arguments
distribution | 
 a character string denoting the distribution abbreviation.  The default value is 
  | 
param.list | 
 a list with values for the parameters of the distribution.  The default value is 
  | 
left.tail.cutoff | 
 a numeric scalar indicating what proportion of the left-tail of the probability 
distribution to omit from the plot.  For densities with a finite support minimum 
(e.g., Lognormal) the default value is   | 
right.tail.cutoff | 
 a scalar indicating what proportion of the right-tail of the probability 
distribution to omit from the plot.  For densities with a finite support maximum 
(e.g., Binomial) the default value is   | 
plot.it | 
 a logical scalar indicating whether to create a plot or add to the existing plot 
(see   | 
add | 
 a logical scalar indicating whether to add the cumulative distribution function curve 
to the existing plot (  | 
n.points | 
 a numeric scalar specifying at how many evenly-spaced points the cumulative 
distribution function will be evaluated.  The default value is   | 
cdf.col | 
 a numeric scalar or character string determining 
the color of the cdf line in the plot.  
The default value is   | 
cdf.lwd | 
 a numeric scalar determining the width of the cdf 
line in the plot.  
The default value is   | 
cdf.lty | 
 a numeric scalar determining the line type of 
the cdf line in the plot.  
The default value is   | 
curve.fill | 
 a logical value indicating whether to fill in 
the area below the cumulative distribution function curve with the color specified by 
  | 
curve.fill.col | 
 when   | 
digits | 
 a scalar indicating how many significant digits to print for the distribution 
parameters.  The default value is   | 
type, main, xlab, ylab, xlim, ylim, ... | 
 additional graphical parameters (see   | 
Details
The cumulative distribution function (cdf) of a random variable X, 
usually denoted F, is defined as:
F(x) = Pr(X \le x) \;\;\;\;\;\; (1)
That is, F(x) is the probability that X is less than or equal to 
x.  This is the probability that the random variable X takes on a 
value in the interval (-\infty, x] and is simply the (Lebesgue) integral of 
the pdf evaluated between -\infty and x. That is,
F(x) = Pr(X \le x) = \int_{-\infty}^x f(t) dt \;\;\;\;\;\; (2)
where f(t) denotes the probability density function of X 
evaluated at t.  For discrete distributions, Equation (2) translates to 
summing up the probabilities of all values in this interval:
F(x) = Pr(X \le x) = \sum_{t \in (-\infty,x]} f(t) = \sum_{t \in (-\infty,x]} Pr(X = t) \;\;\;\;\;\; (3)
A cumulative distribution function (cdf) plot plots the values of the cdf against quantiles of the specified distribution. Theoretical cdf plots are sometimes plotted along with empirical cdf plots to visually assess whether data have a particular distribution.
Value
cdfPlot invisibly returns a list giving coordinates of the points 
that have been or would have been plotted:
Quantiles | 
 The quantiles used for the plot.  | 
Cumulative.Probabilities | 
 The values of the cdf associated with the quantiles.  | 
Author(s)
Steven P. Millard (EnvStats@ProbStatInfo.com)
References
Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth Edition. John Wiley and Sons, Hoboken, NJ.
Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions, Second Edition. John Wiley and Sons, New York.
Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume 1. Second Edition. John Wiley and Sons, New York.
Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume 2. Second Edition. John Wiley and Sons, New York.
See Also
Distribution.df, ecdfPlot, cdfCompare, 
pdfPlot.
Examples
  # Plot the cdf of the standard normal distribution 
  #-------------------------------------------------
  dev.new()
  cdfPlot()
  #==========
  # Plot the cdf of the standard normal distribution
  # and a N(2, 2) distribution on the sample plot. 
  #-------------------------------------------------
  dev.new()
  cdfPlot(param.list = list(mean=2, sd=2), main = "") 
  cdfPlot(add = TRUE, cdf.col = "red") 
  legend("topleft", legend = c("N(2,2)", "N(0,1)"), 
    col = c("black", "red"), lwd = 3 * par("cex")) 
  title("CDF Plots for Two Normal Distributions")
 
  #==========
  # Clean up
  #---------
  graphics.off()