| plotErrorModel {EmpiricalCalibration} | R Documentation | 
Plot the systematic error model
Description
plotErrorModel creates a plot showing the systematic error model.
Usage
plotErrorModel(
  logRr,
  seLogRr,
  trueLogRr,
  title,
  legacy = FALSE,
  fileName = NULL
)
Arguments
| logRr | A numeric vector of effect estimates on the log scale. | 
| seLogRr | The standard error of the log of the effect estimates. Hint: often the standard error = (log(<lower bound 95 percent confidence interval>) - log(<effect estimate>))/qnorm(0.025). | 
| trueLogRr | The true log relative risk. | 
| title | Optional: the main title for the plot | 
| legacy | If true, a legacy error model will be fitted, meaning standard deviation is linear on the log scale. If false, standard deviation is assumed to be simply linear. | 
| fileName | Name of the file where the plot should be saved, for example 'plot.png'.
See the function  | 
Details
Creates a plot with the true effect size on the x-axis, and the mean plus and minus the standard deviation shown on the y-axis. Also shown are simple error models fitted at each true relative risk in the input.
Value
A Ggplot object. Use the ggsave function to save to file.
Examples
data <- simulateControls(n = 50 * 3, mean = 0.25, sd = 0.25, trueLogRr = log(c(1, 2, 4)))
plotErrorModel(data$logRr, data$seLogRr, data$trueLogRr)