fitSystematicErrorModel {EmpiricalCalibration} | R Documentation |
Fit a systematic error model
Description
Fit a systematic error model
Usage
fitSystematicErrorModel(
logRr,
seLogRr,
trueLogRr,
estimateCovarianceMatrix = FALSE,
legacy = FALSE
)
Arguments
logRr |
A numeric vector of effect estimates on the log scale. |
seLogRr |
The standard error of the log of the effect estimates. Hint: often the standard error = (log(<lower bound 95 percent confidence interval>) - log(<effect estimate>))/qnorm(0.025). |
trueLogRr |
A vector of the true effect sizes. |
estimateCovarianceMatrix |
Should a covariance matrix be computed? If so, confidence intervals for the model parameters will be available. |
legacy |
If true, a legacy error model will be fitted, meaning standard deviation is linear on the log scale. If false, standard deviation is assumed to be simply linear. |
Details
Fit a model of the systematic error as a function of true effect size. This model is an extension of the method for fitting the null distribution. The mean and log(standard deviations) of the error distributions are assumed to be linear with respect to the true effect size, and each component is therefore represented by an intercept and a slope.
Value
An object of type systematicErrorModel
.
Examples
controls <- simulateControls(n = 50 * 3, mean = 0.25, sd = 0.25, trueLogRr = log(c(1, 2, 4)))
model <- fitSystematicErrorModel(controls$logRr, controls$seLogRr, controls$trueLogRr)
model