fitMcmcNull {EmpiricalCalibration} | R Documentation |
Fit the null distribution using MCMC
Description
fitNull
fits the null distribution to a set of negative controls using Markov Chain Monte
Carlo (MCMC).
Usage
fitMcmcNull(logRr, seLogRr, iter = 1e+05)
Arguments
logRr |
A numeric vector of effect estimates on the log scale |
seLogRr |
The standard error of the log of the effect estimates. Hint: often the standard error = (log(<lower bound 95 percent confidence interval>) - log(<effect estimate>))/qnorm(0.025) |
iter |
Number of iterations of the MCMC. |
Details
This is an experimental function for computing the 95 percent credible interval of a calibrated p-value using Markov-Chain Monte Carlo (MCMC).
Value
An object of type mcmcNull
containing the mean and standard deviation (both on the log
scale) of the null distribution, as well as the MCMC trace.
Examples
## Not run:
data(sccs)
negatives <- sccs[sccs$groundTruth == 0, ]
null <- fitMcmcNull(negatives$logRr, negatives$seLogRr)
null
plotMcmcTrace(null)
positive <- sccs[sccs$groundTruth == 1, ]
calibrateP(null, positive$logRr, positive$seLogRr)
## End(Not run)
[Package EmpiricalCalibration version 3.1.2 Index]