clustergramInd {EcotoneFinder} | R Documentation |
Clustergram with fuzzy indices plot
Description
Clustergram with fuzzy indices plot
Usage
clustergramInd(Data, k.range = 2:10,
clustering.function = clustergram.kmeans,
clustergram.plot = clustergram.plot.matlines,
FuzzyIndice.plot = FuzzyIndice.plot.matlines, line.width = 0.004,
add.center.points = TRUE, ...)
Arguments
Data |
Should be a scales matrix. Where each column belongs to a different dimension of the observations. |
k.range |
A vector with the number of clusters to plot the clustergram for. |
clustering.function |
Which clustering method to be used. Default is k-means. Can be FCM is set to clustergram.vegclust. See details |
clustergram.plot |
Type of plot for the clustergram output. See details. |
FuzzyIndice.plot |
Type of plot for the fuzzy indices output. See details. |
line.width |
Graphical parameter. Width of the lines. |
add.center.points |
Logical. Should the cluster means be plotted (as points). |
... |
Additional arguments to be passed to the clustering function. |
Details
This clustergram fuction produces an additional plot with the evolution of the main fuzzy indices (normalized partition coefficient (PCN) and normalized partition entropy (PEN)). Maximum values of PCN or minimum values of PEN can be used as criteria to choose the number of clusters.
Value
A clustergram plot and a fuzzy indices evolution plot of the inputed data
Examples
####### Example data:
SyntheticTrial <- SyntheticData(SpeciesNum = 100,
CommunityNum = 3, SpCo = NULL,
Length = 500,
Parameters = list(a=c(40, 80, 50),
b=c(100,250,400),
c=rep(0.03,3)),
dev.c = .015, pal = c("#008585", "#FBF2C4", "#C7522B"))
######## clustergram plots with fuzzy indices plots:
clustergramInd(as.matrix(SyntheticTrial[,2:ncol(SyntheticTrial)]),
clustering.function = clustergram.vegclust.Ind,
clustergram.plot = clustergram.plot.matlines,
FuzzyIndice.plot = FuzzyIndice.plot.matlines,
k.range = 2:10, line.width = .2)